DP/斜率优化


  根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$

  其中 $$s[i]=\sum_{k=1}^{i} c[k] $$

  而$x$即为$s[i]-s[j]+i-j-1$

  这个$x$的表示实在太不好看,我们容易发现$i-j$其实是可以跟$s[i]-s[j]$合到一起的,即令 $c[i]=c[i]+1$,则$s[i]=\sum_{k=1}^{i} (c[i]+1)=\sum_{k=1}^{i}c[i]+i $,所以$x=s[i]-s[j]-1$。再将那个$-1$与$L$合并,即$L=L+1$,然后我们就得到整理后的方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]-L)^2 \} $$

  证明决策单调性:$( j > k )$

\[ \begin{aligned} f[j]+(s[i]-s[j]-L)^2 &< f[k]+(s[i]-s[k]-L)^2 \\ f[j]-f[k]+(s[j]^2-s[k]^2) &< 2*(s[i]-L)*(s[j]-s[k]) \\ \frac{ f[j]-f[k]+(s[j]^2-s[k]^2) }{ 2*(s[j]-s[k]) } &< s[i]-L \end{aligned} \]

  这里将 $s[i]-L$ 当作一个整体来计算

 /**************************************************************
Problem: 1010
User: Tunix
Language: C++
Result: Accepted
Time:132 ms
Memory:2640 kb
****************************************************************/ //BZOJ 1010
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
const int N=;
typedef long long LL;
/******************tamplate*********************/
LL c[N],s[N],f[N];
int q[N],l,r;
double slop(int k,int j){
return double(f[j]+s[j]*s[j]-f[k]-s[k]*s[k])/
double(*(s[j]-s[k]));
}
int main(){
int n=getint(),L=getint()+;
F(i,,n){
c[i]=getint()+;
s[i]=s[i-]+c[i];
}
F(i,,n){
while(l<r && slop(q[l],q[l+])<s[i]-L) l++;
int t=q[l];
f[i]=f[t]+(s[i]-s[t]-L)*(s[i]-s[t]-L);
while(l<r && slop(q[r-],q[r])>slop(q[r],i))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 7156  Solved: 2714
[Submit][Status][Discuss]

Description

P
教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维
容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。
同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度
将为 x=j-i+Sigma(Ck) i<=K<=j
制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作
出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【1010】【HNOI2008】玩具装箱Toy的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  4. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  5. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  6. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP

    原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algo ...

  8. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  9. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  10. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

随机推荐

  1. JQuery Validate使用总结

    本文参考了  http://www.cnblogs.com/linjiqin/p/3431835.html 可以在mvc 或webform项目中使用,可以方便快捷的对前端表单进行校验 一.导入两个js ...

  2. .net IL 指令速查

    名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推送到计算堆栈上. Add.Ovf.Un 将两个无符号整数值相加,执行溢出检查,并且 ...

  3. MongoDB 创建数据库

    语法 MongoDB 创建数据库的语法格式如下: use DATABASE_NAME 如果数据库不存在,则创建数据库,否则切换到指定数据库. 实例 以下实例我们创建了数据库 runoob: > ...

  4. yii2解析非x-www-form-urlencoded类型的请求数据(json,xml)

    组件配置添加: 'request' => [ 'parsers' => [ 'application/json' => 'yii\web\JsonParser', 'applicat ...

  5. android任意view爆炸效果--第三方开源--ExplosionField

    犹如天女散花一样,爆炸散列,比较有趣.Android ExplosionField在github上的项目主页是:https://github.com/tyrantgit/ExplosionField ...

  6. C#之委托初步

    传说中的东西,今天兴趣来了,就研究了研究,把大概什么是委托,如何使用委托稍微梳理了一下. 1.什么是委托 首先,Class(类)是对事物的抽象,例如,哺乳动物都是胎生,那么你可以定义一个哺乳动物的基类 ...

  7. 从基础开始,从一个SQLHelper开始

    最开始考虑的问题有这三点: 1.Access和SQLServer都要能用. 2.尽量简单,清晰. 3.性能不出大问题. public class SQLHelp { #region 私有域 priva ...

  8. 值类型和引用类型(C#基础知识复习)

    一.值类型和引用类型 二.值类型的赋值和相等 三.引用类型的赋值和同一

  9. oracle 各种问题排查

    一.ORA-00257 ORA-00257归档日志写满,最简单方法.可以更改归档的大小. 二.job不自动运行解决方法 http://www.cnblogs.com/xbding/p/5861443. ...

  10. 如何快速重置OUTLOOK2013,2016到初始配置状态,outlook 修改数据文件位置

    适用范围: 安装OUTLOOK的机器 知识点分析: 快速清除当前OUTLOOK所有账户,回归到初始配置状态. 操作步骤: WIN+R调出运行 输入: C:\Program Files (x86)\Mi ...