Codeforces Round 987 (Div. 2)
Codeforces Round 987 (Div. 2) 总结
A
常见的套路,将一个序列变为不下降序列所需要改变的值的最小数量,考虑最大能保留多少个,显然是求最长上升子序列,而这题给出的 \(a\) 序列保证不上升,所以只需要考虑相同长度的一段。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int N=55;
int n;
int a[N];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int ans=0,len=0;
for(int i=1;i<=n;i++)
{
if(a[i]!=a[i-1]) ans=max(ans,len),len=1;
else len++;
}
ans=max(ans,len);
cout<<n-ans<<'\n';
}
int main ()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int T;
cin>>T;
while(T--) solve();
return 0;
}
B
考虑每个数 \(p_i\) 能否移动到 \(i\) 位置。
首先能交换的值只有 \(p_i-1\) 和 \(p_i+1\),显然不能连续移动两次,不然比 \(p_i\) 大或小 \(1\) 的数一定不会到该到的位置。因此最多交换一次。再看是否能交换到自己想要的位置,如果有一个不能,那就不可行。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n;
int a[N];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int st=1;
for(int i=1;i<=n;i++)
{
if(a[i]<i&&!(i-a[i]==1&&a[a[i]]==a[i]+1)) st=0;
else if(a[i]>i&&!(a[i]-i==1&&a[a[i]]==a[i]-1)) st=0;
}
if(st) cout<<"Yes\n";
else cout<<"No\n";
}
int main ()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int T;
cin>>T;
while(T--) solve();
return 0;
}
C
构造题,思路还是比较清晰的。
首先不难想到 \(1,1,2,2,3,3,\dots\) 这样的情况,所以 \(n\) 为偶数时一定成立。
再考虑奇数,由于任意两个相同的馅料之间的距离都要是完全平方数,考虑三个相同的,位置为 \(x,y,z\),满足 \(y-x=a^2\),\(z-y=b^2\),\(z-x=c^2\),且 \(a,b,c\) 都为正整数,因此有 \(c^2=a^2+b^2\)。
考虑最小的勾股数 \(3,4,5\)。令 \(x=1,y=10,z=26\),这样剩下的位置就是偶数个,比较好构造了。下面给出一种构造方案:
\]
后面就按偶数的接下去就行了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n;
int a[N];
void solve()
{
cin>>n;
if(n%2==0)
{
int cnt=1;
for(int i=1;i<=n;i+=2) a[i]=a[i+1]=++cnt;
}
else
{
if(n>=27)
{
a[1]=a[10]=a[26]=1;
int cnt=1;
for(int i=2;i<=8;i+=2) a[i]=a[i+1]=++cnt;
for(int i=11;i<=21;i+=2) a[i]=a[i+1]=++cnt;
a[23]=a[27]=++cnt;
a[24]=a[25]=++cnt;
for(int i=28;i<=n;i+=2) a[i]=a[i+1]=++cnt;
}
else
{
cout<<-1<<'\n';
return ;
}
}
for(int i=1;i<=n;i++) cout<<a[i]<<' ';
cout<<'\n';
}
int main ()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int T;
cin>>T;
while(T--) solve();
return 0;
}
D
赛时的清奇想法。
首先发现能跳跃的两个位置是逆序对,因此考虑用并查集维护,并记录集合内最大值与最小值。
再考虑这样一种做法,先遍历一遍数组,目前遇到的最大值为 \(x\),下标为 \(id\),加入一个数 \(a_i\)。
- 若 \(a_i>=x\) 更新 \(x\) 和 \(id\)。
- 若 \(a_i<x\) 那么就合并 \(i\) 和 \(id\)。
以最后一组样例为例:
用 \(mx_i\) 表示集合 \(i\) 中最大的 \(a_i\),\(mi_i\) 表示最小值。
然后考虑合并不同集合,从后往前,如果出现两个不同集合 \(i,j\) 且 \(i<j\)。由前面的过程易知 \(mx_i \le mx_j\),如果 \(mx_i>mi_j\),就说明这两个集合可以合并。
那有没有可能出现不是相邻的集合合并呢?答案是否定的,考虑 \(k,i,j\) 三个集合,\(mx_k \le mx_i \le mx_j\),如果 \(i\) 与 \(j\) 不能合并,则 \(mx_i \le mi_j\),就会有 \(mx_k \le mx_i \le mi_j\),显然 \(k\) 与 \(j\) 不能合并。因此每个集合都只能和相邻的集合合并。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int N=5e5+5;
int n;
int a[N],ans[N];
int fa[N],mi[N],mx[N];
int find(int x)
{
if(x==fa[x]) return x;
return fa[x]=find(fa[x]);
}
void merge(int x,int y)
{
x=fa[x],y=fa[y];
fa[y]=x;
mi[x]=min(mi[x],mi[y]);
mx[x]=max(mx[x],mx[y]);
}
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
fa[i]=i;
mi[i]=mx[i]=a[i];
}
int x=a[1],id=1;
for(int i=2;i<=n;i++)
{
if(a[i]<x) merge(id,i);
else x=a[i],id=i;
}
for(int i=n-1;i>=1;i--)
if(find(i)!=find(i+1)&&mi[find(i+1)]<mx[find(i)])
merge(i,i+1);
for(int i=1;i<=n;i++) cout<<mx[find(i)]<<' ';
cout<<'\n';
}
int main ()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int T;
cin>>T;
while(T--) solve();
return 0;
}
Codeforces Round 987 (Div. 2)的更多相关文章
- Codeforces Round #485 (Div. 2)
Codeforces Round #485 (Div. 2) https://codeforces.com/contest/987 A #include<bits/stdc++.h> us ...
- Codeforces Round #485 (Div. 2) D. Fair
Codeforces Round #485 (Div. 2) D. Fair 题目连接: http://codeforces.com/contest/987/problem/D Description ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #485 (Div. 2) E. Petr and Permutations
Codeforces Round #485 (Div. 2) E. Petr and Permutations 题目连接: http://codeforces.com/contest/987/prob ...
- Codeforces Round #485 (Div. 2) C. Three displays
Codeforces Round #485 (Div. 2) C. Three displays 题目连接: http://codeforces.com/contest/987/problem/C D ...
- Codeforces Round #485 (Div. 2) A. Infinity Gauntlet
Codeforces Round #485 (Div. 2) A. Infinity Gauntlet 题目连接: http://codeforces.com/contest/987/problem/ ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
随机推荐
- Java微信授权登录小程序接口
1.微信授权登录小程序的流程是什么 微信授权登录小程序的流程是一个涉及前端和后端交互的过程,主要目的是让用户能够使用微信账号快速登录小程序,避免重复输入用户名和密码.以下是该流程的详细步骤: 1.1前 ...
- poi的excel导出
poi的excel导出 这个导出依赖于模板文件,可便捷设置表头样式. 也可以不使用模板,直接创建. 1.引入poi依赖 <dependency> <groupId>org.ap ...
- zabbix网络拓扑图介绍
"zabbix network map"可以简单的理解为动态网络拓扑图,可以针对业务来配置zabbix map,通过map可以了解应用的整体状况:服务器是否异常.网络是否有故障.应 ...
- 我的 mac 生产力工具
应用名称 说明 安装命令 Homebrew mac 上的强大包管理器 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com ...
- MySQL的索引原理及使用
MySQL中的索引模型 Mysql中的索引使用的数据结构一般为搜索树,这里的搜索树,一般使用B树,这里补一下数据结构中的B树结构:说B树之前,先顺一个前置的知识点,平衡二叉树: 平衡二叉树 二叉树应该 ...
- Tabby,一款老外都在用的 SSH工具,竟然还支持网页操作
会编程的蜗牛 主要分享java编程,也会涉及其他方向的技术分享. 1篇原创内容 公众号 序言各位好啊,我是会编程的蜗牛,作为java开发者,或者说编程人员,程序员的我们,Linux服务器总是我们一个绕 ...
- Linux中的一些命令
1.新增新用户lili,不允许登录系统,用户ID为3000===useradd -u 3000 -s /sbin/nologin lili2.循环创建目录 /www/wwwroot/html/test ...
- cf2009 Codeforces Round 971 (Div. 4)
A. Minimize! 签到题.计算\((c-a)+(b-c)\)的最小值,其实值固定的,等于\(b-a\). int a, b; void solve() { cin >> a > ...
- vue前端开发仿钉图系列(5)右侧编辑页面的开发详解
右侧编辑页面主要有两个入口,一是添加marker或者线面双击结束的时候,新建数据信息:二是点击底部数据的单元行或者查看编辑或者点击地图上的marker以及线面,编辑相关数据.整理总结不易,如需全部代码 ...
- websocket打造在线聊天室
1. 常见的网络通信协议 tcp udp http 和 websocket 等 : http 超文本传输协议 ,是一个无状态,无连接,单向的应用层协议,缺点是服务器不能主动的给客户端发送消息 :消息 ...