刚学习的扩展欧几里得算法,刷个水题

求解  线性不定方程 和  模线性方程

求方程 ax+by=c 或 ax≡c (mod b) 的整数解

1、ax+by=gcd(a,b)的一个整数解:

<span style="font-size:14px;">void ex_gcd(int a,int b,int &d,int &x,int &y)//扩展欧几里得算法
{
if(!b){d=a;x=1;y=0;}
else {ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}</span>

2、ax+by=c的全部整数解:

方程两边同一时候乘以g/c(g为a,b的最大公约数)。则原方程为  g *a/c *x+g*b/c*y=g

则g*x/c=x0,g*y/c=y0         (  x0,y0为 方程ax+by=gcd(a,b)的一个特解)

所以原方程的一个特解x=x0*c/g,y=y0*c/g

求通解的过程省略。

。。

最后通解为 (x+kb1,y-ka1)   b1=b/g,a1=a/g。

3、ax≡c (mod b)方程的全部整数解:

ax和c关于模b同余。则(ax-c)是b的整数倍。设倍数为y,则原方程等价于 ax-c=by,移项得 ax-by=c,转变为求解ax+by=c的形式

假设两个数的最大公约数为1。则两个数互质

题目分析:

给定 a b k找到满足ax+by=k 的令|x|+|y|最小(等时令a|x|+b|y|最小)最好还是a 〉b

先用扩展欧几里得算法求出 一组解 x0。y0,通解能够表示为x=x0+b/d *t y=y0-a/d *t

|x|+|y|=|x0+b/d *t |+|y0-a/d *t| 这个关于t的函数的最小值在  t  =  y0*d/a  附近的两整点里取。故直接验证这两点就可以。

由于   设a>b之后

|x0+b/d *t| 单调递增,|y0-a/d*t| 先递减再递增。

因斜率a/d>b/d。所以总的|x0+b/d *t |+|y0-a/d *t| 先递减再递增,使y0-a/d*t0=0 的t0附近有最小值。

//转载

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int x0,z1,a1,b1;
void ex_gcd(int a,int b,int &d,int &x,int &y)
{
if(!b){d=a;x=1;y=0;}
else {ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int calx(int k)
{
return abs(x0+k*b1);
}
int caly(int k)
{
return abs(z1-k*a1);
}
int main()
{
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c)&&(a||b||c)){
int flag=1;
if(a<b) {flag=0;swap(a,b);}
int d,x,y,k,k1,k2;
ex_gcd(a,b,d,x,y);
x0=x*(c/d),z1=y*(c/d);
a1=a/d,b1=b/d,k1=z1/a1;
if(k1*a1-z1>=0) k1--;
k2=k1+1;
if(calx(k1)+caly(k1)>calx(k2)+caly(k2)) k=k2;
else if(calx(k1)+caly(k1)<calx(k2)+caly(k2)) k=k1;
else{
if(calx(k1)*a+caly(k1)*b>calx(k2)*a+caly(k2)*b) k=k2;
else k=k1;
}
int ansx=calx(k);
int ansy=caly(k);
if(!flag){
printf("%d %d\n",ansy,ansx);
}
else printf("%d %d\n",ansx,ansy);
} return 0;
}

POJ2142——The Balance的更多相关文章

  1. poj2142 The Balance

    poj2142 The Balance exgcd 应分为2种情况分类讨论 显然我们可以列出方程 ax-by=±d 当方程右侧为-d时,可得 by-ax=d 于是我们就得到了2个方程: ax-by=d ...

  2. [暑假集训--数论]poj2142 The Balance

    Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. F ...

  3. POJ2142 The Balance (扩展欧几里德)

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia The Balance 题目大意  你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<= ...

  4. POJ-2142 The Balance 扩展欧几里德(+绝对值和最小化)

    题目链接:https://cn.vjudge.net/problem/POJ-2142 题意 自己看题吧,懒得解释 思路 第一部分就是扩展欧几里德 接下来是根据 $ x=x_0+kb', y=y_0- ...

  5. poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的

    题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用 开始时我列出来三个方程 : a*x+b*y=d; a*x-b*y=d; b*y-ax=d; 傻眼 ...

  6. POJ2142:The Balance (欧几里得+不等式)

    Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. F ...

  7. The Balance(poj2142)

    The Balance Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5452   Accepted: 2380 Descr ...

  8. POJ2142:The Balance——题解

    http://poj.org/problem?id=2142 题目大意:有一天平和两种数量无限的砝码(重为a和b),天平左右都可以放砝码,称质量为c的物品,要求:放置的砝码数量尽量少:当砝码数量相同时 ...

  9. Sample a balance dataset from imbalance dataset and save it(从不平衡数据中抽取平衡数据,并保存)

    有时我们在实际分类数据挖掘中经常会遇到,类别样本很不均衡,直接使用这种不均衡数据会影响一些模型的分类效果,如logistic regression,SVM等,一种解决办法就是对数据进行均衡采样,这里就 ...

随机推荐

  1. nginx - ssl 配置 - globelsign ssl

    前提: 3个文件 - domain.csr.domain.key.xxx.cer 简述: 1. 本地生成 .key文件  [附件] 2. 再利用key文件,生成csr(certificate Secu ...

  2. table中嵌套table,如何用jquery来控制奇偶行颜色

    总是要趁着自己还有记忆的时候,把该记录下来的都记录下来,着实是不敢恭维自己的记性. 相信很多时候,我们前端人员,经常会用到table里面的某个td中还嵌套着table,而这个时候还总要去弄奇偶行的颜色 ...

  3. cgroup隔离的知识点

    tasks中写入的是线程号 cgroup.procs是进程号 ===================CPU隔离===================== 主机CPU核数: cat /proc/cpui ...

  4. ASP.NET MVC+Bootstrap个人博客之修复UEditor编辑时Bug(四)

    我的个人博客站在使用百度富文本编辑器UEditor修改文章时,遇到了一些问题,(不知是bug,还是我没有配置好).但总算找到了解决方法,在此记录下来. 小站首页文章列表显示为(显示去除HTML标签后的 ...

  5. Microsoft-pubs(图书馆管理系统)-数据库设计

    ylbtech-DatabaseDesgin:微软提供-pubs(图书馆管理系统)-数据库设计   1.A,数据库关系图 1.B,数据库设计脚本 -- ======================== ...

  6. cocos2d - CCParallaxNode 例子

    CGSize winSize = [[CCDirector sharedDirector] winSize]; CCParallaxNode * node = [CCParallaxNodenode] ...

  7. "_ITERATOR_DEBUG_LEVEL"的不匹配项: 值"0"不匹配值"2"

    error: 1>vtkCommon.lib(vtkDebugLeaksManager.obj) : error LNK2038: 检测到“_ITERATOR_DEBUG_LEVEL”的不匹配项 ...

  8. DateTime.IsLeapYear 方法判断是否是闰年,DaysInMonth判断一个月有几天,Addday取得前一天的日期GetYesterDay

    一:DateTime.IsLeapYear 方法判断是否是闰年 二:代码 using System; using System.Collections.Generic; using System.Co ...

  9. asp.net如何将DataSet转换成josn并输出

    public class JsonUtil { public string ToJson(DataSet dataSet) { string jsonString = "{"; f ...

  10. PHP:产生不重复随机数的方法

    来源:http://www.ido321.com/1217.html 无论是Web应用,还是WAP或者移动应用,随机数都有其用武之地.在最近接触的几个小项目中,我也经常需要和随机数或者随机数组打交道, ...