HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5768
Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1p2…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
Sample Input
2
2 1 100
3 2
5 3
0 1 100
Sample Output
Case #1: 7
Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
Source
2016 Multi-University Training Contest 4
##题意:
对于给出的区间[x, y]找出有多少个符合要求的数:
1. 能被7整除.
2. 给出不超过15组(pi, ai),其中pi为质数;
要求找出的数x满足 x % pi != ai;
##题解:
可以先找出能被7整除但不满足条件2的数:
就得到了一组同余模方程,这里用中国剩余定理来处理.
因为只要满足任一同余方程就需要被计数,所以需要用容斥原理来做.
由于n=15,所以最多只有2^15种方程组合,用状态压缩记录每个组合对应的方程,对于每种组合跑一遍中国剩余定理,找出在区间范围内的个数,再用容斥原理累加起来(奇数个元素就加,偶数个则减).
以上思路很好想,坑点在于:由于数据规模比较大
中国剩余定理中 ans = (ans+x*w*a[i])%M; 乘法的3个因子和M的规模都可能达到longlong上限,所以一乘就可能导致爆掉longlong.
这里的解决方案是:用快速乘法取模(类似快速幂)代替上述乘法.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 25
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
LL _left, _right;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
int BitCount2(int n) {
int c =0 ;
for(; n; ++c) {
n &= (n -1) ;
}
return c ;
}
LL quickmul(LL a, LL b, LL mod) {
a %= mod;
LL ret = 0;
while(b) {
if(b & 1) ret = (ret + a) % mod;
b >>= 1;
a = (a + a) % mod;
}
return ret;
}
int n, m[maxn],a[maxn];
LL M;
LL China(int state)
{
LL w,ans=0; M=1;
for(int i=0;i<=n;i++)
if(!i || state&(1<<(i-1)))
M *= m[i];
for(int i=0;i<=n;i++) if(!i || state&(1<<(i-1))){
w=M/m[i];
ex_gcd(w,m[i]); while(x<0) {x+=m[i];y-=w;}
//ans=(ans+x*w*a[i])%M;
//上式乘法会爆longlong,所以需要用快速乘法来防暴.
ans = (ans + quickmul(a[i] ,quickmul(x,w,M), M)) % M;
}
LL cur = (ans+M)%M;
LL T = M;
cur = cur % T;
LL l_ans, r_ans;
if(_left <= cur) l_ans = cur;
else l_ans = _left - (_left-cur) % T + T;
if(_right < cur) return 0LL;
else if(_right == cur) return 1LL;
else r_ans = _right - (_right-cur) % T;
if(l_ans > r_ans) return 0LL;
return (r_ans-l_ans) / T + 1LL;
}
int main(int argc, char const *argv[])
{
//IN;
int t; cin >> t; int ca = 1;
while(t--)
{
cin >> n >> _left >> _right;
m[0] = 7LL; a[0] = 0LL;
for(int i=1; i<=n; i++) {
scanf("%I64d %I64d", &m[i], &a[i]);
}
LL ans = 0;
for(int i=1; i<(1<<n); i++) {
int flag = (BitCount2(i)%2? 1:0);
if(flag) ans += China(i);
else ans -= China(i);
}
LL tmp = _right/7LL - _left/7LL;
if(_left%7LL==0) tmp++;
printf("Case #%d: %I64d\n", ca++, tmp-ans);
}
return 0;
}
HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)的更多相关文章
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...
- HDU 5768 Lucky7(CRT+容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...
随机推荐
- UserAccountInfo时间倒计时
界面如下: 代码如下: using System;using System.Collections.Generic;using System.ComponentModel;using System.D ...
- bzoj1297: [SCOI2009]迷路
矩阵. 一个图的邻接矩阵的m次幂相当于 长度恰好为m的路径数.这要求边权为1. 因为边权小于等于9,所以可以把一个点拆成9的点. 拆成的第(i+1)个点向第i个点连边. 如果存在边(u,v,w) 就由 ...
- Ext.Net学习笔记01:在ASP.NET WebForm中使用Ext.Net
Ext.Net是一个对ExtJS进行封装了的.net控件库,可以在ASP.NET WebForm和MVC中使用.从今天开始记录我的学习笔记,这是第一篇,今天学习了如何在WebForm中使用Ext.Ne ...
- 在VC中显示和处理图片的方法
落鹤生 发布于 2011-10-21 09:12 点击:344次 来自:blog.csdn.net/mengaim_cn 几种用GDI画图的方法介绍. TAG: GDI 法1:这个方法其实用的是 ...
- poj 3160 Father Christmas flymouse
// 题目描述:从武汉大学ACM集训队退役后,flymouse 做起了志愿者,帮助集训队做一些琐碎的事情,比如打扫集训用的机房等等.当圣诞节来临时,flymouse打扮成圣诞老人给集训队员发放礼物.集 ...
- 学习Mongodb(一)
图片摘录自陈彦铭出品2012.5的<10天掌握MongDB> MongoDB的特点--->面向集合存储,易于存储对象类型的数据--->模式自由--->支持动态查询---& ...
- z-index的妙用
总是在纠结一个问题,当然我是前端初学者.这个问题就是,一个元素放在另一个元素里面,总希望它显示时,但是别撑开元素.这个时候一定要想到z-index. 例如今天写的一个浮动在导航栏下面的一个图片,我用的 ...
- JAVA数据库处理(连接,数据查询,结果集返回)
package john import java.io.IOException; import java.util.*; public class QueryDataRow { public Hash ...
- 给IT新男的15点建议:苦逼程序员的辛酸反省与总结
很多人表面上看着老实巴交的,实际上内心比谁都好强.自负.虚荣.甚至阴险.工作中见的多了,也就习惯了. 有一些人,什么事都写在脸上,表面上经常得罪人,甚至让人讨厌.但是他们所表现的又未必不是真性情. 我 ...
- Eclipse “Invalid Project Description” when creating new project from existing source
1) File>Import>General>Existing Project into Workspace2) File>Import>Android>Exist ...