HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5768
Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1p2…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
Sample Input
2
2 1 100
3 2
5 3
0 1 100
Sample Output
Case #1: 7
Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
Source
2016 Multi-University Training Contest 4
##题意:
对于给出的区间[x, y]找出有多少个符合要求的数:
1. 能被7整除.
2. 给出不超过15组(pi, ai),其中pi为质数;
要求找出的数x满足 x % pi != ai;
##题解:
可以先找出能被7整除但不满足条件2的数:
就得到了一组同余模方程,这里用中国剩余定理来处理.
因为只要满足任一同余方程就需要被计数,所以需要用容斥原理来做.
由于n=15,所以最多只有2^15种方程组合,用状态压缩记录每个组合对应的方程,对于每种组合跑一遍中国剩余定理,找出在区间范围内的个数,再用容斥原理累加起来(奇数个元素就加,偶数个则减).
以上思路很好想,坑点在于:由于数据规模比较大
中国剩余定理中 ans = (ans+x*w*a[i])%M; 乘法的3个因子和M的规模都可能达到longlong上限,所以一乘就可能导致爆掉longlong.
这里的解决方案是:用快速乘法取模(类似快速幂)代替上述乘法.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 25
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
LL _left, _right;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
int BitCount2(int n) {
int c =0 ;
for(; n; ++c) {
n &= (n -1) ;
}
return c ;
}
LL quickmul(LL a, LL b, LL mod) {
a %= mod;
LL ret = 0;
while(b) {
if(b & 1) ret = (ret + a) % mod;
b >>= 1;
a = (a + a) % mod;
}
return ret;
}
int n, m[maxn],a[maxn];
LL M;
LL China(int state)
{
LL w,ans=0; M=1;
for(int i=0;i<=n;i++)
if(!i || state&(1<<(i-1)))
M *= m[i];
for(int i=0;i<=n;i++) if(!i || state&(1<<(i-1))){
w=M/m[i];
ex_gcd(w,m[i]); while(x<0) {x+=m[i];y-=w;}
//ans=(ans+x*w*a[i])%M;
//上式乘法会爆longlong,所以需要用快速乘法来防暴.
ans = (ans + quickmul(a[i] ,quickmul(x,w,M), M)) % M;
}
LL cur = (ans+M)%M;
LL T = M;
cur = cur % T;
LL l_ans, r_ans;
if(_left <= cur) l_ans = cur;
else l_ans = _left - (_left-cur) % T + T;
if(_right < cur) return 0LL;
else if(_right == cur) return 1LL;
else r_ans = _right - (_right-cur) % T;
if(l_ans > r_ans) return 0LL;
return (r_ans-l_ans) / T + 1LL;
}
int main(int argc, char const *argv[])
{
//IN;
int t; cin >> t; int ca = 1;
while(t--)
{
cin >> n >> _left >> _right;
m[0] = 7LL; a[0] = 0LL;
for(int i=1; i<=n; i++) {
scanf("%I64d %I64d", &m[i], &a[i]);
}
LL ans = 0;
for(int i=1; i<(1<<n); i++) {
int flag = (BitCount2(i)%2? 1:0);
if(flag) ans += China(i);
else ans -= China(i);
}
LL tmp = _right/7LL - _left/7LL;
if(_left%7LL==0) tmp++;
printf("Case #%d: %I64d\n", ca++, tmp-ans);
}
return 0;
}
HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)的更多相关文章
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...
- HDU 5768 Lucky7(CRT+容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...
随机推荐
- Mybatis的if test字符串比较问题
1. Mybatis判断字符串是否为空的变态写法 <if test="bussSceneIsNull =='0'.toString() "> <![CDATA[ ...
- c# webbrowser 随机点击链接 2
找到广告代码所在的div或table ,然后用WebBrowser执行js去点这个div(或table) 那个广告是js实现的,你浏览的时候是看不到图片和连接的,请问各位大虾应该怎么实现?给点思路.. ...
- bzoj2351 2462
我没写hash,写了一些奇怪的做法,好像被hash随便操了…… 如果没有多测,那么这道题是白书上的例题 把询问矩阵当作a个模板串,建成一个ac自动机 把一开始的矩阵当作n个串放到自动机上匹配,找到a个 ...
- BZOJ_1028_[JSOI2007]_麻将_(模拟+贪心)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1028 同一种花色的牌,序数为\(1,2,...,n\).定义"和了"为手上 ...
- asp.net 使用JQuery 调用Ashx 后面直接写方法名,通过反射找到对应的方法
using System.Reflection; public class Industry_Manager : IHttpHandler { HttpRequest gRequest = null; ...
- Liunx常用的特殊环境变量
[weiqiang.liu@l~]$ sh variable xiaoqiang xiaoxuenumber:2scname:variablefirst:xiaoqiangsecond:xiaoxue ...
- NavieBayes中的多项式与伯努力模型
1文本分类过程 例如文档:Good good study Day day up可以用一个文本特征向量来表示,x=(Good, good, study, Day, day , up).在文本分类中,假设 ...
- 【转】让 cocos2d-x 的 CCHttpRequest 支持https
肖锐(Cooki)个人原创,欢迎转载,转载请注明地址,肖锐(Cooki)的技术博客 http://blog.csdn.net/xiao0026 由于游戏用到了网络头像, 今天发现换成facebook ...
- wifi详解(三)
1 WLAN驱动结构介绍 1.1 SDIO驱动 在drivers/mmc下面是mmc卡,SD卡和SDIO卡驱动部分,其中包括host驱动,card驱动和core部分,由于网络接 ...
- information_schema中的三个关于锁的表
在5.5中,information_schema 库中增加了三个关于锁的表(MEMORY引擎):innodb_trx ## 当前运行的所有事务innodb_locks ## ...