TextRank算法提取关键词的Java实现
转载:码农场 » TextRank算法提取关键词的Java实现
谈起自动摘要算法,常见的并且最易实现的当属TF-IDF,但是感觉TF-IDF效果一般,不如TextRank好。
TextRank是在 Google的PageRank算法启发下,针对文本里的句子设计的权重算法,目标是自动摘要。它利用投票的原理,让每一个单词给它的邻居(术语称窗口) 投赞成票,票的权重取决于自己的票数。这是一个“先有鸡还是先有蛋”的悖论,PageRank采用矩阵迭代收敛的方式解决了这个悖论。TextRank也 不例外:
PageRank的计算公式:
正规的TextRank公式
正规的TextRank公式在PageRank的公式的基础上,引入了边的权值的概念,代表两个句子的相似度。
但是很明显我只想计算关键字,如果把一个单词视为一个句子的话,那么所有句子(单词)构成的边的权重都是0(没有交集,没有相似性),所以分子分母的权值w约掉了,算法退化为PageRank。所以说,这里称关键字提取算法为PageRank也不为过。
另外,如果你想提取关键句(自动摘要)的话,请参考姊妹篇《TextRank算法自动摘要的Java实现》。
TextRank的Java实现
先看看测试数据:
程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。
我取出了百度百科关于“程序员”的定义作为测试用例,很明显,这段定义的关键字应当是“程序员”并且“程序员”的得分应当最高。
首先对这句话分词,这里可以借助各种分词项目,比如Ansj分词,得出分词结果:
[程序员/n, (, 英文/nz,
programmer/en, ), 是/v, 从事/v, 程序/n, 开发/v, 、/w, 维护/v, 的/uj, 专业/n, 人员/n,
。/w, 一般/a, 将/d, 程序员/n, 分为/v, 程序/n, 设计/vn, 人员/n, 和/c, 程序/n, 编码/n, 人员/n,
,/w, 但/c, 两者/r, 的/uj, 界限/n, 并/c, 不/d, 非常/d, 清楚/a, ,/w, 特别/d, 是/v, 在/p,
中国/ns, 。/w, 软件/n, 从业/b, 人员/n, 分为/v, 初级/b, 程序员/n, 、/w, 高级/a, 程序员/n, 、/w,
系统/n, 分析员/n, 和/c, 项目/n, 经理/n, 四/m, 大/a, 类/q, 。/w]
然后去掉里面的停用词,这里我去掉了标点符号、常用词、以及“名词、动词、形容词、副词之外的词”。得出实际有用的词语:
[程序员, 英文, 程序, 开发, 维护, 专业, 人员, 程序员, 分为, 程序, 设计, 人员, 程序, 编码, 人员, 界限, 特别, 中国, 软件, 人员, 分为, 程序员, 高级, 程序员, 系统, 分析员, 项目, 经理]
之后建立两个大小为5的窗口,每个单词将票投给它身前身后距离5以内的单词:
{开发=[专业, 程序员, 维护, 英文, 程序, 人员],
软件=[程序员, 分为, 界限, 高级, 中国, 特别, 人员],
程序员=[开发, 软件, 分析员, 维护, 系统, 项目, 经理, 分为, 英文, 程序, 专业, 设计, 高级, 人员, 中国],
分析员=[程序员, 系统, 项目, 经理, 高级],
维护=[专业, 开发, 程序员, 分为, 英文, 程序, 人员],
系统=[程序员, 分析员, 项目, 经理, 分为, 高级],
项目=[程序员, 分析员, 系统, 经理, 高级],
经理=[程序员, 分析员, 系统, 项目],
分为=[专业, 软件, 设计, 程序员, 维护, 系统, 高级, 程序, 中国, 特别, 人员],
英文=[专业, 开发, 程序员, 维护, 程序],
程序=[专业, 开发, 设计, 程序员, 编码, 维护, 界限, 分为, 英文, 特别, 人员],
特别=[软件, 编码, 分为, 界限, 程序, 中国, 人员],
专业=[开发, 程序员, 维护, 分为, 英文, 程序, 人员],
设计=[程序员, 编码, 分为, 程序, 人员],
编码=[设计, 界限, 程序, 中国, 特别, 人员],
界限=[软件, 编码, 程序, 中国, 特别, 人员],
高级=[程序员, 软件, 分析员, 系统, 项目, 分为, 人员],
中国=[程序员, 软件, 编码, 分为, 界限, 特别, 人员],
人员=[开发, 程序员, 软件, 维护, 分为, 程序, 特别, 专业, 设计, 编码, 界限, 高级, 中国]}
然后开始迭代投票:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
for ( int i = 0 ; i < max_iter; ++i) { Map<String, Float> m = new HashMap<String, Float>(); float max_diff = 0 ; for (Map.Entry<String, Set<String>> entry : words.entrySet()) { String key = entry.getKey(); Set<String> value = entry.getValue(); m.put(key, 1 - d); for (String other : value) { int size = words.get(other).size(); if (key.equals(other) || size == 0 ) continue ; m.put(key, m.get(key) + d / size * (score.get(other) == null ? 0 : score.get(other))); } max_diff = Math.max(max_diff, Math.abs(m.get(key) - (score.get(key) == null ? 0 : score.get(key)))); } score = m; if (max_diff <= min_diff) break ; } |
排序后的投票结果:
[程序员=1.9249977,
人员=1.6290349,
分为=1.4027836,
程序=1.4025855,
高级=0.9747374,
软件=0.93525416,
中国=0.93414587,
特别=0.93352026,
维护=0.9321688,
专业=0.9321688,
系统=0.885048,
编码=0.82671607,
界限=0.82206935,
开发=0.82074183,
分析员=0.77101076,
项目=0.77101076,
英文=0.7098714,
设计=0.6992446,
经理=0.64640945]
程序员果然荣登榜首,并且分数也有区分度,嗯,勉勉强强。
TextRank算法提取关键词的Java实现的更多相关文章
- 基于TextRank提取关键词、关键短语、摘要
一.TextRank原理 TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. 1. Pa ...
- TextRank算法
TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. (1)PageRank PageRa ...
- Textrank算法介绍
先说一下自动文摘的方法.自动文摘(Automatic Summarization)的方法主要有两种:Extraction和Abstraction.其中Extraction是抽取式自动文摘方法,通过提取 ...
- TF-IDF与余弦类似性的应用(一):自己主动提取关键词
作者: 阮一峰 日期: 2013年3月15日 原文链接:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html 这个标题看上去好像非常复杂,事实上我要谈的 ...
- 基于TextRank算法的文本摘要
本文介绍TextRank算法及其在多篇单领域文本数据中抽取句子组成摘要中的应用. TextRank 算法是一种用于文本的基于图的排序算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之 ...
- TextRank算法及生产文本摘要方法介绍
TextRank 算法是一种用于文本的基于图的排序算法,其基本思想来源于谷歌的 PageRank算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之间的相似度作为边的权重,通过循环迭代 ...
- Java 需要记得、了解的关键词 (Java 学习中的小记录)
Java 需要记得.了解的关键词 (Java 学习中的小记录) 作者:王可利(Star·星星) 总结:本次随笔,仅且拿来平时翻阅记忆用
- PageRank算法与TextRank算法详解
PageRank算法: 该算法本质上属于有向带权图. 对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设: 数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入 ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
随机推荐
- 负载均衡--大型在线系统实现的关键(上篇)(再谈QQ游戏百万人在线的技术实现)
http://blog.csdn.net/sodme/article/details/393165 —————————————————————————————————————————————— 本文作 ...
- UIView UITableView 背景图片添加
这几天,经常用到为某个视图设置背景图片,而API中UIView没有设置背景图片的方法,搜集归纳如下: 第一种方法: 利用的UIView的设置背景颜色方法,用图片做图案颜色,然后传给背景颜色. UICo ...
- datatable把一个LIst的数据放入两个colum防止窜行的做法
DataColumn objectOne = new DataColumn("objectOne", typeof(object)); dt.Columns.Add(objectO ...
- JDBC 是什么
JDBC is a Java database connectivity technology (Java Standard Edition platform) from Oracle Corpora ...
- 那些不被关注但很重要的html标签
1.meta标签: <meta> 元素可提供有关页面的元信息(meta-information),比如针对搜索引擎和更新频度的描述和关键词. <meta> 标签位于文档的头部, ...
- Apache Kafka:下一代分布式消息系统
[http://www.infoq.com/cn/articles/apache-kafka/]分布式发布-订阅消息系统. Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交日 ...
- 传参方式由url携带改为post提交
参考:http://www.cnblogs.com/logon/p/3218834.html 我们这里使用了iframe嵌套form表单POST提交,很简单,却能满足get|post等任何复杂情况的要 ...
- (剑指Offer)面试题20:顺时针打印矩阵
题目: 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字, 例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2, ...
- git filename to long问题解决
在.git/config 下面编辑 [core] longpaths = true
- XHTML编码规范
1.所有的标记都要有结束标记. 2.所有标记的名称和属性名称都必须使用小写 3.所有的的标记必须合理嵌套 4.属性值必须用引号包含起来 5.需要设置的属性都要给一个值 XHTML 规定所有属性都必须有 ...