从投影的角度理解pca:向量,投影,基,内积,坐标,维数,分散程度,方差,协方差矩阵,对角化,特征值分解,主成分分析PCA
参考:http://blog.csdn.net/songzitea/article/details/18219237
从投影的角度理解pca:向量,投影,基,内积,坐标,维数,分散程度,方差,协方差矩阵,对角化,特征值分解,主成分分析PCA的更多相关文章
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 降维(一)----说说主成分分析(PCA)的源头
降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------- ...
- 【降维】主成分分析PCA推导
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最 ...
- 再谈协方差矩阵之主成分分析PCA
上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Co ...
- 主成分分析 PCA算法原理
对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合.这时就需要借助主成分分析 (principal component analysis)来概括诸多信 ...
- PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933),即最大方差理论。
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量 ...
- 主成分分析(PCA)的一种直观理解
源自知乎的一个答案,网上很多关于PCA的文章,不过很多都只讲到了如何理解方差的投影,却很少有讲到为什么特征向量就是投影方向.本文从形象角度谈一谈,因为没有证明,所以不会严谨,但是应该能够帮助形象理解P ...
- 转:如何学习SQL(第二部分:从关系角度理解SQL)
转自:http://blog.163.com/mig3719@126/blog/static/285720652010950825538/ 6. 从关系角度理解SQL 6.1. 关系和表 众所周知,我 ...
随机推荐
- 16进制串hex与ASCII字符串相互转换
提供两个函数,方便十六进制串与ASCII 字符串之间的相互转换,使用函数需要注意的是返回的串是在堆上通过 calloc 分配的,所以,记得使用完返回值释放该块,并且将指向该块的指针 =NULL . c ...
- PHP防止SQL注入与几种正则表达式讲解
注入漏洞代码和分析 代码如下: <?php function customerror($errno, $errstr, $errfile, $errline) { echo <b& ...
- selenium实战脚本集——新浪微博发送QQ每日焦点(火狐)
selenium实战脚本集(1)——新浪微博发送QQ每日焦点,乙醇用谷歌实现的,下边是用火狐实现的. 代码如下: # coding = utf-8 from selenium import webdr ...
- [转] ADO.NET实体框架引发争论
转自:http://developer.51cto.com/art/200811/76356.htm 2008-11-11 14:00 朱永光译 infoq 我要评论(0) 一个在ADO.NET实体框 ...
- ****Git 常用命令和使用思维导图
Git 是一个很强大的分布式版本控制系统.它不但适用于管理大型开源软件的源代码,管理私人的文档和源代码也有很多优势. 本来想着只把最有用.最常用的 Git 命令记下来,但是总觉得这个也挺有用.那个也用 ...
- SDUT1281Cup
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1281 题意 : 一个杯子,告诉你底面半径,顶端 ...
- hdu 3123 GCC
这题分2种情况: 1) n>=m时,k!%m=0(k>=m),所以只需令n=m-1即可: 2) n<m时,正常情况处理即可. ;}
- Java 连接SQLite数据库
下载jar包: http://www.sqlite.com.cn/Upfiles/source/sqlitejdbc-v033-nested.tgz public class TestSQLite { ...
- dbgrid显示access备注信息
procedure TfrmAllFind.DBGrid6DrawColumnCell(Sender: TObject; const Rect: TRect; DataCol: Integer; C ...
- 2410中断中SRCPND和INTPND清零的疑问
2410中断中SRCPND和INTPND清零的疑问SRCPND是中断源引脚寄存器,某个位被置1表示相应的中断被触发,但我们知道在同一时刻内系统可以触发若干个中断,只要中断被触发了,SRCPND的相应位 ...