http://blog.csdn.net/acdreamers/article/details/17021095

有一个n*m的棋盘,每次可以取走一个方格并拿掉它右边和上面的所有方格。拿到左下角的格子(1,1)者输,如下图是8*3的

棋盘中拿掉(6,2)和(2,3)后的状态。




结论:答案是除了1*1的棋盘,对于其他大小的棋盘,先手总能赢。


分析:有一个很巧妙的证明可以保证先手存在必胜策略,可惜这个证明不是构造性的,也就是说没有给出先手怎么下才能赢。


证明如下:

如果后手能赢,也就是说后手有必胜策略,使得无论先手第一次取哪个石子,后手都能获得最后的胜利。那么现在假设先手

最右上角的石子(n,m),接下来后手通过某种取法使得自己进入必胜的局面。但事实上,先手在第一次取的时候就可以和

后手这次取的一样,进入必胜局面了,与假设矛盾。



巧克力游戏的变形:


约数游戏:有1~n个数字,两个人轮流选择一个数字,并把它和它的约数擦去。擦去最后一个数的人赢,问谁会获胜。


分析:类似巧克力游戏,得到结论就是无论n是几,都是先手必胜。(可假设先手选“1”)。

Chomp!游戏 (组合游戏Combinatorial Games)的更多相关文章

  1. Nim游戏(组合游戏Combinatorial Games)

    http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...

  2. Vijos P1196吃糖果游戏[组合游戏]

    描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...

  3. 51nod-1661 1661 黑板上的游戏(组合游戏)

    题目链接: 1661 黑板上的游戏 Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ..., an,游戏的规则是这样的:1. Alice占有先手主动权.2. 每个人可以选取一 ...

  4. HDU 1536 S-Nim (组合游戏+SG函数)

    题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...

  5. 浅谈公平组合游戏IGC

    浅谈公平组合游戏IGC IGC简介 一个游戏满足以下条件时被叫做IGC游戏 (前面三个字是自己YY的,不必在意) 竞争性:两名玩家交替行动. 公平性:游戏进程的任意时刻,可以执行的操作和操作者本人无关 ...

  6. Codeforces 918D MADMAX 图上dp 组合游戏

    题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...

  7. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  8. 博弈论题目总结(二)——SG组合游戏及变形

    SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...

  9. 【博弈论】组合游戏及SG函数浅析

    目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合 ...

  10. luoguP2148 [SDOI2009]E&D [sg函数][组合游戏]

    题目描述 小E 与小W 进行一项名为“E&D”游戏. 游戏的规则如下: 桌子上有2n 堆石子,编号为1..2n.其中,为了方便起见,我们将第2k-1 堆与第2k 堆 (1 ≤ k ≤ n)视为 ...

随机推荐

  1. Hdu 5289-Assignment 贪心,ST表

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5289 Assignment Time Limit: 4000/2000 MS (Java/Others) ...

  2. 【Zookeeper学习】Zookeeper-3.4.6安装部署

    [时间]2014年11月19日 [平台]Centos 6.5 [工具] [软件]jdk-7u67-linux-x64.rpm zookeeper-3.4.6.tar.gz [步骤] 1. 准备条件 ( ...

  3. 射频识别技术漫谈(7)——ID卡【worldsing笔记】

    ID(Identification)是识别的意思,ID卡就是识别卡.ID卡包含范围广泛,只要具有识别功能的卡片都可以叫ID卡,例如条码卡,磁卡都可以是ID卡,我们这儿说的当然是射频识别卡. 射频ID卡 ...

  4. Postgresql:prepared statement "S_1" already exists

    近期由于业务需要和一些json的存储查询需要,把新的应用切到pgsql上来,刚刚切好,是可以正常使用的,但是偶尔会来一下 java连接pgsql 偶尔出现 这个错.   org.postgresql. ...

  5. ECSHOP在线手册布局参考图--文章详情页 article.dwt

        A.购物车 1,设置方法 程序自动读取购物车的商品数量 2,代码相关 cart.lbi 中 {insert_scripts files='transport.js'} <div clas ...

  6. 本地或者是koala软件编译less文件为css

    背景: 事情的起因是这般的,平时工作是在线上办公,样式是使用less来写,于是乎,这样我从线上download下来的less文件无法直接在自己的本地环境运行.有一个问题就是我要把less文件先编译成c ...

  7. Myeclipse:No projects are available for deployment to this server!

    这是因为以前的项目不是用myEclipse创建的,所以用myeclipse deploy的时候找不到你的项目. 可以这样做:右击原项目名 - myeclipse - Add myeclipse  We ...

  8. Windows 7 EXE图标丢失修复方法

    有过Win7下的一些EXE文件图标莫名奇妙丢失,但功能却正常的情况吗?这是图标缓存的问题,应该是Win7的bug. 在命令提示符下输入下列命令即可恢复. 以下是代码片段: taskkill /im e ...

  9. Android设计模式(1)----单例模式

    在非常多设计模式中.我相信大多数程序员最早接触的设计模式就是单例模式啦,当然了我也不例外. 单例模式应用起来应该是全部设计模式中最简单的.单例模式尽管简单,可是假设你去深深探究单例模式,会涉及到非常多 ...

  10. liveness 生存性/活性

    翻译了两篇,这篇就不翻译了,自己写吧. 对于线程来说除了安全性,我们还应该重视它的生存性(我认为翻译成三个字说着比較顺). 为了保证线程安全,我们往往须要用到同步,可是同步限制了线程的运行,线程必须为 ...