62. Unique Paths
题目:
A robot is located at the top-left corner of a m x ngrid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
链接: http://leetcode.com/problems/unique-paths/
题解:
dp的经典问题,每次向右或向下走一步。第一行或者第一列走到头只有一种方法,所以初始化为1,转移方程是dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
Time Complexity O(m * n), Space Complexity O(m * n)。
public class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n]; for(int i = 0; i < m; i ++)
dp[i][0] = 1; for(int j = 0; j < n; j ++)
dp[0][j] = 1; for(int i = 1; i < m; i ++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
} return dp[m - 1][n - 1];
}
}
Update:
public class Solution {
public int uniquePaths(int m, int n) {
if(m == 0 || m == 0)
return 0;
int[][] dp = new int[m][n]; for(int i = 0; i < m; i++) // initialize first column
dp[i][0] = 1; for(int j = 1; j < n; j++) // initialize first row
dp[0][j] = 1; for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
} return dp[m - 1][n - 1];
}
}
二刷:
Java:
经典的dp,据说还可以用Math来做。我们还是使用dp。
2D DP:
建立一个m x n矩阵,初始化第一条边和第一列为1,然后利用转移方程res[i][j] = res[i - 1][j] + res[i][j - 1],最后返回res[m - 1][n - 1]
Time Complexity - O(mn), Space Complexity - O(mn)
public class Solution {
public int uniquePaths(int m, int n) {
if (m < 0 || n < 0) {
return 0;
}
int[][] res = new int[m][n];
for (int i = 0; i < m; i++) {
res[i][0] = 1;
}
for (int j = 1; j < n; j++) {
res[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
res[i][j] = res[i - 1][j] + res[i][j - 1];
}
}
return res[m - 1][n - 1];
}
}
1D DP with rolling array:
对这种简单的DP,一般我们可以用rolling array来减少空间复杂度。我们建立一个长度为n的array,先初始化其中每个元素的值为1,然后在遍历m x n的时候,转移方程简化为 res[j] += res[j - 1], 还是之前res[i][j]左边和上边的元素。这样节约了一点空间。
Time Complexity - O(mn), Space Complexity - O(n)
public class Solution {
public int uniquePaths(int m, int n) {
if (m < 0 || n < 0) {
return 0;
}
int[] res = new int[n];
for (int j = 0; j < n; j++) {
res[j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
res[j] += res[j - 1];
}
}
return res[n - 1];
}
}
三刷:
Java:
2D dp:
public class Solution {
public int uniquePaths(int m, int n) {
if (m < 0 || n < 0) return 0;
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 1; j < n; j++) dp[0][j] = 1; for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
Rolling array 1:
public class Solution {
public int uniquePaths(int m, int n) {
if (m < 0 || n < 0) return 0;
int[] dp = new int[n];
for (int j = 0; j < n; j++) dp[j] = 1; for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[j] += dp[j - 1];
}
}
return dp[n - 1];
}
}
Rolling array2: 现在才能领会到为什么我们有的时候建立dp数组要用int[] dp = new int[n + 1]。 多增加一个长度的话是为了写的时候不用对第一行赋初值,看起来比较简练,但其实时间复杂度还是一样的。
public class Solution {
public int uniquePaths(int m, int n) {
if (m < 0 || n < 0) return 0;
int[] dp = new int[n + 1];
dp[0] = 1; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
dp[j] += dp[j - 1];
}
}
return dp[n - 1];
}
}
Reference:
https://leetcode.com/discuss/9110/my-ac-solution-using-formula
https://leetcode.com/discuss/47829/math-solution-o-1-space
62. Unique Paths的更多相关文章
- leetcode 62. Unique Paths 、63. Unique Paths II
62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...
- 刷题62. Unique Paths
一.题目说明 题目62. Unique Paths,在一个m*n矩阵中,求从左上角Start到右下角Finish所有路径.其中每次只能向下.向右移动.难度是Medium! 二.我的解答 这个题目读读题 ...
- [LeetCode] 62. Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 62. Unique Paths && 63 Unique Paths II
https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...
- LeetCode OJ 62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- LeetCode 62. Unique Paths(所有不同的路径)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 62. Unique Paths(中等,我自己解出的第一道 DP 题^^)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 【一天一道LeetCode】#62. Unique Paths
一天一道LeetCode系列 (一)题目 A robot is located at the top-left corner of a m x n grid (marked 'Start' in th ...
- [leetcode]62. Unique Paths 不同路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
随机推荐
- 如何计算IP地址及CIDR(收藏)
如何计算IP地址及CIDR 一. IP地址概念 IP地址是一个32位的二进制数,它由网络ID和主机ID两部份组成,用来在网络中唯一的标识的一台计算机.网络ID用来标识计算机所处的网段:主 机ID用来标 ...
- 介绍一下linux的文件系统
(1)/bin:该目录用于存放用户命令. 目录 /usr/bin 中也存放了一些用户命令.(2)/sbin:该目录用于存放许多系统命令,例如 shutdown.目录 /usr/bin 中也包括了许多系 ...
- iOS常见问题(2)
一.模拟器黑屏 解决方法: 二.打代码时,Xcode没提示 解决方法: 0. 点击Preferences 1. 进入Text Editing 2. 勾选 三.有时候可能在勾选 Autolayout的时 ...
- 微信消息处理JAXP-dom解析
package cn.lihainan.test; import java.io.BufferedReader; import java.io.ByteArrayInputStream; import ...
- Luence简单实现1
初步认识Luence,简单按照官方文档做了个例子,大牛绕开,仅供小白路过参考.如有错误,欢迎指正批评. 建一个简单工程,并且加入这几个小奶瓶,如下图: 注:版本不同,可能对jdk的需求是不同的,这个需 ...
- 《Dive into Python》Chapter 2 and Chapter 3 笔记
Example 2.1. odbchelper.py def buildConnectionString(params): """Build a connection s ...
- ios map 显示用户位置
昨天遇到个奇怪的问题,用户的位置在地图中死活不显示,showUserLocation也设置了,最后发现是因为实现了 mapView protocol中的一个方法: -(MKAnnotationView ...
- Ajax出入江湖
window.onload = initAll; var xhr = false; function initAll() { if (window.XMLHttpRequest) { xhr = ne ...
- uva 10303
卡特兰数 但是个高精度 一开始用最普通的递推式 超时了 百度百科了一下 用另类递推式过了 ~~ 这个大数类是做数据结构课程设计的时候写的... #include <cstdio> #in ...
- Building Plugins for iOS
This page describes Native Code Plugins for the iOS platform. Building an Application with a Native ...