之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune。

所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型。fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中。

fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果。在数据量不是很大的情况下,fine tune会是一个比较好的选择。但是如果你希望定义自己的网络结构的话,就需要从头开始了。

这里采用一个实际的例子,钱币分类

1、我们收集了2W张图片,将其中4000张作为测试集,剩下作为训练集。

2、接着我们使用上一篇博客中的方法,生成words.txt、train.txt、test.txt三个文件,这里可以不用生成lmdb,因为caffe支持直接指定图片文件。

3、编辑配置文件,这里我们参考finetune_flickr_style例子(它是用caffenet的训练结果进行finetune的),拷贝其配置文件:

solver.prototxt

net: "examples/money_test/fine_tune/train_val.prototxt"
test_iter:
test_interval:
base_lr: 0.001

lr_policy: "step"
gamma: 0.1
stepsize:
display:
max_iter:

momentum: 0.9
weight_decay: 0.0005
snapshot:
snapshot_prefix: "examples/money_test/fine_tune/finetune_money"

solver_mode: CPU 

train_val.prototxt

其实fine tune使用的网络跟原有网络基本一样,只不过每层调整了一些参数,具体可以参照finetune_flickr_style和caffenet网络配置的对比

name: "FlickrStyleCaffeNet"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size:
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
image_data_param {
source: "examples/money_test/data/train.txt"
batch_size:
new_height:
new_width:
}
}
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size:
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
image_data_param {
source: "examples/money_test/data/test.txt"
batch_size:
new_height:
new_width:
}
}
..........
layer {
name: "fc8_flickr"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_flickr"
# lr_mult is set to higher than for other layers, because this layer is starting from random while the others are already trained
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output: 17 #这里我们的分类数目
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value:
}
}
}
.....

deploy.prototxt

用于实际分类时的网络

.........
layer {
name: "fc8_flickr"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_flickr"
# lr_mult is set to higher than for other layers, because this layer is starting from random while the others are already trained
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value:
}
}
}
...........

4、开始训练

./build/tools/caffe train -solver examples/money_test/fine_tune/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel

其中model指定的是caffenet训练好的model。

使用fine tune的效果比较好,经过3400多次迭代后,测试集上正确率达到92%,实际测试效果也比较理想。这也许就是深度学习的优势,不需要仔细地挑选特征,只要数据足够,也能得到不错的效果。

caffe简易上手指南(三)—— 使用模型进行fine tune的更多相关文章

  1. caffe简易上手指南(一)—— 运行cifar例子

    简介 caffe是一个友好.易于上手的开源深度学习平台,主要用于图像的相关处理,可以支持CNN等多种深度学习网络. 基于caffe,开发者可以方便快速地开发简单的学习网络,用于分类.定位等任务,也可以 ...

  2. caffe简易上手指南(二)—— 训练我们自己的数据

    训练我们自己的数据 本篇继续之前的教程,下面我们尝试使用别人定义好的网络,来训练我们自己的网络. 1.准备数据 首先很重要的一点,我们需要准备若干种不同类型的图片进行分类.这里我选择从ImageNet ...

  3. UnityShader快速上手指南(三)

    简介 这一篇还是一些基本的shader操作:裁剪.透明和法向量的应用 (纠结了很久写不写这些,因为代码很简单,主要是些概念上的东西) 先来看下大概的效果图:(从左到右依次是裁剪,透明,加了法向量的透明 ...

  4. Rancher 快速上手指南操作(1)

    Rancher 快速上手指南操作(1)该指南知道用户如何快速的部署Rancher Server 管理容器.前提是假设你的机器已经安装好docker了.1 确认 docker 的版本,下面是 ubunt ...

  5. Resharper上手指南

    原文http://www.cnblogs.com/renji/archive/2007/12/11/resharper.html Resharper上手指南 我是visual studio的忠实用户, ...

  6. NewLife.XCode 上手指南2018版(二)增

    目录 NewLife.XCode 上手指南2018版(一)代码生成 NewLife.XCode 上手指南2018版(二)增 NewLife.XCode 上手指南2018版(三)查 NewLife.XC ...

  7. NewLife.XCode 上手指南2018版(一)代码生成

    目录 NewLife.XCode 上手指南2018版(一)代码生成 NewLife.XCode 上手指南2018版(二)增 NewLife.XCode 上手指南2018版(三)查 NewLife.XC ...

  8. [转]Rancher 快速上手指南操作(1)

    本文转自:http://www.cppblog.com/zhiyewang/archive/2016/03/17/213053.aspx Rancher 快速上手指南操作(1)该指南知道用户如何快速的 ...

  9. Caffe学习笔记(三):Caffe数据是如何输入和输出的?

    Caffe学习笔记(三):Caffe数据是如何输入和输出的? Caffe中的数据流以Blobs进行传输,在<Caffe学习笔记(一):Caffe架构及其模型解析>中已经对Blobs进行了简 ...

随机推荐

  1. js设备判断

    判断设备android,weixin,ios var UserAgent=navigator.userAgent.toLowerCase(); var IS_ANDROID=false; var IS ...

  2. antuomake 生成configure的使用

    configure 作为编译配置脚本,有大量选项可供不同编译需求,这些选项直 接作用到最终生成的Makefile文件 问题:automake默认的gcc编译选项为-Wall -O2 -g,怎么改为我们 ...

  3. tomcat使用memcached完成集群

    一.安装memcached 1.windows下安装memcached 需要到一个网站下载memcached的for win 32版本.在memcached的官方网站我是找不到的.我看了下,提供win ...

  4. html标准写法

    <!--doctype指定文档类型htm--> <!doctype html> <html> <header> <!--设置字符集 utf-8-- ...

  5. Delphi2010中DataSnap技术网摘

    一.为DataSnap系统服务程序添加描述 这几天一直在研究Delphi 2010的DataSnap,感觉功能真是很强大,现在足有理由证明Delphi7该下岗了. DataSnap有三种服务模式,其中 ...

  6. ajax中的post方法中回调函数不执行的问题

    前一段时间接触了JQuery Ajax中的.post()方法和.get()方法,感觉到ajax的简洁和强大,当用到.post()方法时,去W3上查找相关的使用方法,感觉十分简单,用法很明了,然后,直接 ...

  7. linux 输入子系统(4)---- input子系统的初始化

    Input子系统的初始化函数为input_init(),如下: static int __init input_init(void) { int err; input_init_abs_bypass( ...

  8. WPF中Expander控件样式,ListBox的样式(带checkbox)恢复

    Expander控件样式: <ControlTemplate x:Key="ExpanderToggleButton" TargetType="ToggleButt ...

  9. (转载)Cocos2dx-OpenGL ES 2.0教程:你的第一个三角形(1)

    前言 在本系列教程中,我会以当下最流行的2D引擎Cocos2D-X为基础,介绍OpenGL ES 2.0的一些基本用法.本系列教程的宗旨是OpenGL扫盲,让大家在使用Cocos2D-X过程中,知其然 ...

  10. Mac 使用phpMyAdmin

    1 把phpMyAdmin-4.6.5.2-all-languages.zip文件解压到“/Library/WebServer/Documents/”中,并改名为phpmyadmin. 2 复制“/L ...