CC 3-Palindromes(manacher)
传送门:3-Palindromes
题意:求为回文串且能整除3且不前导0的子串个数。
分析:由 manacher算法O(N)可算出以i为坐标的最长为p[i]回文子串,且Si-k,Si-k+1......Si+k-1,Si+k(0<k<p[i])全为回文串。
又知,能整除3的整数数位和也能整除3,那么只要Si-k,Si-k+1......Si+k-1,Si+k和整除3即可。
由回文串对称性知Si-k==Si-k,那么只要Si-k..Si-1这段中模3余数与Si模3余数相同,Si-k...Si+k和必定整除3(设左右各位余数x+本身x=3x).
因此只要预处理出Si...Sj整段中模3余0,1,2的个数,就可O(N)得出全部符合条件的子串。
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1000010
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int p[N<<],len,num,mx,id;
char s[N],str[N<<];
void build()
{
len=strlen(s);num=;
str[num++]='@';str[num++]='#';
for(int i=;i<len;i++)
{
str[num++]=s[i];
str[num++]='#';
}
str[num]=;
}
void manacher()
{
mx=;
memset(p,,sizeof(p));
for(int i=;i<num;i++)
{
if(mx>i)p[i]=min(p[*id-i],mx-i);
else p[i]=;
while(str[i-p[i]]==str[i+p[i]])p[i]++;
if(p[i]+i>mx)mx=p[i]+i,id=i;
}
}
int a[N<<],sum[N<<][];
void solve()
{
for(int i=;i<num;i++)
{
a[i]=a[i-];//前缀和
if(str[i]!='#')a[i]=(a[i]+str[i]-'')%;
for(int j=;j<;j++)sum[i][j]=sum[i-][j];
if(str[i]!='#'&&str[i]!='')
sum[i][a[i]]++;
}
LL ans=;
for(int i=;i<num;i++)
{
int t=(str[i]-'')%;
if(str[i]=='#')t=;
if(str[i]!='#'&&t==)ans++;
int k=(t+a[i])%;//由于sum[i+p[i]-1][k]~sum[i][k]都多了a[i],因此补回来防止误差
ans+=sum[i+p[i]-][k]-sum[i][k];
}
printf("%lld\n",ans);
}
int main()
{
while(scanf("%s",s)>)
{
build();
manacher();
solve();
}
}
CC 3-Palindromes(manacher)的更多相关文章
- HDU 5340 Three Palindromes (Manacher)
题意: 判断是否能将字符串S分成三段非空回文串. 思路: 先预处理出前缀回文串和后缀回文串的位置,将位置分别装入两个集合中,O(n). 针对每个前缀回文串的终点位置,挑出不相交的后缀回文串,对中间那段 ...
- 【SPOJ】NUMOFPAL - Number of Palindromes(Manacher,回文树)
[SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- O(n)回文子串(Manacher)算法
O(n)回文子串(Manacher)算法 资料来源网络 参见:http://www.felix021.com/blog/read.php?2040 问题描述: 输入一个字符串,求出其中最大的回文子串. ...
- 【学习笔记】字符串—马拉车(Manacher)
[学习笔记]字符串-马拉车(Manacher) 一:[前言] 马拉车用于求解连续回文子串问题,效率极高. 其核心思想与 \(kmp\) 类似:继承. --引自 \(yyx\) 学姐 二:[算法原理] ...
- hdu5340—Three Palindromes—(Manacher算法)——回文子串
Three Palindromes Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 3948 The Number of Palindromes(Manacher+后缀数组)
题意 求一个字符串中本质不同的回文子串的个数. $ 1\leq |string| \leq 100000$ 思路 好像是回文自动机的裸题,但是可以用 \(\text{Manacher}\) (马拉车) ...
- codeforce No to Palindromes!(枚举)
/* 题意:给定一个字符串中没有任何长度>1的回文子串!求按照字典序的该串的下一个字符串 也不包含长度>1的任何回文子串! 思路:从最低位进行枚举,保证第i位 不与 第 i-1位和第 i- ...
- HDU 4513 吉哥系列故事——完美队形II(Manacher)
Problem Description 吉哥又想出了一个新的完美队形游戏! 假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成 ...
- FLASH CC 2015 CANVAS (七)总结
FLASH CC 2015 CANVAS (一至七)确切来说是自己在摸索学习过程中而写.所以定为“开荒教程”. 去年年底转战H5,半年中一直非常忙也不敢用CC来做项目,担心有BUG或者无法实现需求,所 ...
随机推荐
- perl 函数回调 引用$client->run(sub {$client->sync});
匿名函数引用: [root@wx03 wx]# perl a1.pl CODE(0x2077b30) test [root@wx03 wx]# cat a1.pl $ref= sub {return ...
- HDU 1593 find a way to escape
数学题. 题意是问你能不能逃脱. 当V1的 角速度大于 V2的时候,能够一直保持 V1,O(圆心),V2 三点一线. 跑到一定距离.角速度小于的时候,就以三点一线为初始状态直接跑直线. #includ ...
- 关于WEB三层架构的思考
1.MVC设计思想 MVC程序设计思想是眼下比較流行的WEB开发的模式,当中,M(model)是模型.即JavaBean,用来封装和保存数据:V(view)是视图,即JSP.用来显示内容:C(cont ...
- 50个Android开发技巧(11 为文字加入特效)
问题:怎样构建一个模拟LED数字时钟的页面?效果例如以下图所看到的: (原文地址:http://blog.csdn.net/vector_yi/article/details/24460227) 分析 ...
- Swift - 给表格UITableView添加索引功能(快速定位)
像iOS中的通讯录,通过点击联系人表格右侧的字母索引,我们可以快速定位到以该字母为首字母的联系人分组. 要实现索引,我们只需要两步操作: (1)实现索引数据源代理方法 (2)响应点击索引触发的代理 ...
- PreTranslateMessage和TranslateMessage区别
PreTranslateMessage是消息在送给TranslateMessage函数之前被调用的,绝大多数本窗口的消息都要通过这里,比较常用,当需要在MFC之前处理某些消息时,常常要在这里添加代码. ...
- 2.4.1-Java语言基础(常量)
2.4.1 常量 常量表示不能改变的数值. Java中常量的分类: 1,整数常量.全部整数 2,小数常量.全部小数 3,布尔型常量.较为特有,仅仅有两个数值.true false. 4,字符常量.将一 ...
- Ural 1073 Square Country (DP)
题目地址:Ural 1073 DP水题.也能够说是背包. #include <iostream> #include <cstdio> #include <string&g ...
- mysql READ-COMMITTED 模式下 行锁不会升级到表级锁
mysql> select sn,id,info from s100 group by id; +-----+------+------+ | sn | id | info | +-----+- ...
- 我们熟悉的Textbox
创建只读文本框 方法一: 可用Readonly属性防止用户编辑文本框内容.将Readonly属性设置为True后,用户就可以滚动文本框中的文本并将其突出显示,但不能作任何更改.将Readonly属性设 ...