题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍……

这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的概率是多少 用acm抢票成功的概率是多少……

做过不多的概率dp 还在摸索……

dp[i][j]代表第i轮有j个icpc的人已经有票了……

当然同时i-j个通过其他方式抢票的人也有票了 这就是用同样的函数搜两次的原理……

优化一次i<=a 一次是把初始化放到for里……

第一次见这么卡时间的题……

把dp数组的优化放到for里就过了……

 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<string>
#include<map>
#include<vector>
#include<queue>
#define M(a,b) memset(a,b,sizeof(a))
using namespace std;
double dp[][]; //i轮j个有票
bool ok=false;
double solve(int a,int b,int c){
double n=(double)a;
double icpc=(double)b;
double acm=(double)c;
if(n>icpc+acm) n=icpc+acm;
if(a>b+c) a=b+c;
dp[][]=;
for(int i=;i<=n;i++){
dp[i][]=; //优化初始化就过了
dp[i][]+=dp[i-][]*(acm-i+1.0)/(acm-i+1.0+icpc*2.0);
}
for(int i=;i<=n;i++){
dp[i][i]=;
dp[i][i]+=dp[i-][i-]*((icpc-i+1.0)*2.0)/(acm+(icpc-i+1.0)*2.0);
}
for(int i=;i<=n;i++){
for(int j=;j<i&&j<=a;j++){
dp[i][j]=;
//这里还可以优化
dp[i][j]+=dp[i-][j]*(acm-(i-j-1.0))/(acm-(i-j-1.0)+(icpc-j)*2.0);
dp[i][j]+=dp[i-][j-]*((icpc-j+1.0)*2.0)/(acm-(i-j)+(icpc-j+1.0)*2.0);
}
}
double ans=;
for(int i=;i<=n&&i<=a;i++)
if(ok)ans+=(dp[a][i])*i/icpc;
else ans+=(dp[a][i])*(n-i)/acm;
return ans;
} int main(){
int n,icpc,acm;
while(~scanf("%d",&n)){
if(n==) break; //这里不加应该也可以
scanf("%d%d",&icpc,&acm);
if(icpc==&&acm==){
printf("1.0000000000000000\n");
printf("1.0000000000000000\n");
continue;
}
ok=true;
printf("%.16lf\n",solve(n,icpc+,acm));
ok=false;
printf("%.16lf\n",solve(n,icpc,acm+));
}
return ;
}

UVALive 6672 Bonus Cards 概率dp的更多相关文章

  1. zoj 3380 Patchouli's Spell Cards 概率DP

    题意:1-n个位置中,每个位置填一个数,问至少有l个数是相同的概率. 可以转化求最多有l-1个数是相同的. dp[i][j]表示前i个位置填充j个位置的方案数,并且要满足上面的条件. 则: dp[i] ...

  2. UVALive 2522 Chocolate(概率DP)

    思路:定义DP方程dp[i][j]标记选到第i个巧克力的时候,桌面上还剩下j个巧克力,状态转移有两个方向,dp[i-1][j-1],dp[i-1]lj+1],分别表示桌面上多了一个和消了一个,乘上需要 ...

  3. uvalive 5721 Activation (概率dp+方程)

    题目链接:http://vjudge.net/problem/viewProblem.action?id=24999 主要思想就是解方程的思想. 二维dp应该很容易想到,就是当前位置加队伍长度. dp ...

  4. UVALive 6514:Crusher’s Code(概率dp)

    题目链接 https://icpcarchive.ecs.baylor.edu/external/65/6514.pdf 题意:给出n个数(n<8) 求这n个数分别两个程序排成有序时,程序的期望 ...

  5. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  6. 概率dp小结

    好久之前学过,记得是一次亚洲区的前几天看了看概率dp,然后亚洲区就出了一道概率dp,当时虽然做上了,但是感觉有很多地方没懂,今天起早温习了一下,觉得很多地方茅塞顿开,果然学习的话早上效果最好了. 首先 ...

  7. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  8. HDU 4336——Card Collector——————【概率dp】

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

随机推荐

  1. vue 2.0 无法编译ES6语法

    # vue2.0 webpack 无法编译 ES6 语法 之前在使用 vue 1.x 时用 vue-loader@8.0.0 版本可以正常打包vue的代码,包括ES6语法也能正常转为ES5语法,但是当 ...

  2. Python基础知识学习_Day8

    一.类的扩展方法 1.静态方法 语法:@staticmethod,静态方法不能访问公有属性,不能访问类.可在实例化后直接调用,并且在方法里可以通过self.调用实例变量或类变量. class eat( ...

  3. C# 三角形外心和外接圆半径计算方法

    在网上找了好久,想找一个现成的方法来用,折腾半天发现没有一个好用的,最后迫不得已自己写了一个,需要的同学可以直接拿去用, private void GetTriangleExcenterRadius( ...

  4. Chapter 21_5.1 URL编码

    URL编码是http所使用的一种编码方式,用于在一个URL中传送各种参数.该编码方式会将特殊字符("=","&","+")编码为&q ...

  5. C#数字类型及运算符

  6. matlab中选择图片路径

    %读取训练图片数据文件 [FileName,PathName] = uigetfile('*.*','选择测试图片数据文件t10k-images.idx3-ubyte'); %暴露图片路径 saved ...

  7. 给RelativeLayout设置背景,无效果bug解决

    drawable文件夹下面 tomyshop_selector.xml文件 <?xml version="1.0" encoding="utf-8"?&g ...

  8. 使用Jax-rs 开发RESTfull API 入门

    使用Jax-rs 开发RESTfull API 入门 本文使用 Jersey 2开发RESTfull API.Jersey 2 是 JAX-RS 接口的参考实现 使用到的工具 Eclipse Neon ...

  9. ios UIImageView处理图片大小问题

    UIImageView视图可以显示图片 实例化UIImageView有两种方法 第一种方法: UIImageView *myImageView = [[ UIImageView alloc] init ...

  10. Alamofire4.0 在 CocoaPods无法更新的问题

    因为淘宝镜像已经不能使用,使用新的镜像升级ruby到最新状态 platform :ios, '9.0'use_frameworks! target '输入你的工程名字' do pod 'Alamofi ...