利用顺序存储和链式存储的特点,可以实现树的存储结构的表示,具体表示法有很多种。

1)双亲表示法:在每个结点中,附设一个指示器指示其双亲结点在数组中的位置。

2)孩子表示法:把每个结点的孩子排列起来,以单链表作存储结构,则n个结点有n个孩子链表,如果是叶子结点则此单链表为空。然后n个头指针又组成一个线性表,采用顺序存储结构,存放进一个一维数组中。

3)孩子兄弟表示法:任意一棵树,它的结点的第一个孩子如果存在就是唯一的,它的右兄弟如果存在也是唯一的。因此,可以设置两个指针,分别指向该结点的第一个孩子和此结点的右兄弟。--------------该表示法的一大好处就是它把一棵复杂的树变成了一棵二叉树。

二叉树

二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成  -------------------文字描述里面已含有递归的思想。

特殊二叉树:

1)斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。

2)满二叉树:在一棵二叉树中,如果所有分支节点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。

3)完全二叉树:对一棵具有 n 个结点的二叉树按层序编号,如果编号为 i(1<=i<=n)的结点与同样深度的满二叉树中编号为 i 的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

遍历二叉树

二叉树的遍历(traversing bianry tree)是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

1)前序遍历:规则是若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树----------------------递归思想

2)中序遍历:规则是若树为空,则空操作返回,否则从根结点开始(仅仅是开始,先不访问该结点),中序遍历根结点的左子树,然后是访问根结点(访问),最后中序遍历右子树--------------------递归思想

3)后序遍历:规则是若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点。

4)层序遍历:规则是若树为空,则空操作返回,否则从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

遍历性质:

1、已知前序遍历序列和中序遍历序列,可以唯一确定一棵二叉树。

2、已知后序遍历序列和中序遍历序列,可以唯一确定一棵二叉树。

但注意:已知前序和后序遍历,是不能确定一棵二叉树的。

具体实现代码如下:

/* BiTree.h头文件 */
#include<iostream>
typedef char TElemType; class BiTNode{ /*创建结点类,使用的是左右孩子表示法*/
public:
BiTNode():data(0),lchild(NULL),rchild(NULL){}
TElemType data;
BiTNode *lchild,*rchild;
}; void CreateBiTree(BiTNode **T) /*二叉树的建立,这里形参用的是双指针,需要注意*/
{
std::cout<<"请前序遍历输入各节点:"; /*这里输入的是一个扩展二叉树,每个结点若有空指针,*/
TElemType ch; /*则将其值设为一个特定值,本代码中是'#'*/
std::cin>>ch;
std::cin.clear();
if(ch=='#')
*T=NULL;
else
{
*T=new BiTNode;
if(!*T)
exit(1);
(*T)->data=ch;
CreateBiTree(&(*T)->lchild);
CreateBiTree(&(*T)->rchild);
}
} void PreOrderTraverse(BiTNode *T) /*前序遍历*/
{
if (T==NULL)
return;
std::cout<<T->data<<"\t";
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);
} void InOrderTraverse(BiTNode *T) /*中序遍历*/
{
if (T==NULL)
return;
InOrderTraverse(T->lchild);
std::cout<<T->data<<"\t";
InOrderTraverse(T->rchild);
} void PostOrderTraverse(BiTNode *T) /*后序遍历*/
{
if(T==NULL)
return;
PostOrderTraverse(T->lchild);
PostOrderTraverse(T->rchild);
std::cout<<T->data<<"\t";
}

运行结果如下:

C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历、中序遍历、后续遍历)的更多相关文章

  1. java 根据二叉树前序 ,中序求后续

    在一棵二叉树总,前序遍历结果为:ABDGCEFH,中序遍历结果为:DGBAECHF,求后序遍历结果. 我们知道: 前序遍历方式为:根节点->左子树->右子树 中序遍历方式为:左子树-> ...

  2. [Leetcode] Construct binary tree from inorder and postorder travesal 利用中序和后续遍历构造二叉树

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:  You may assume th ...

  3. 【数据结构与算法】二叉树的 Morris 遍历(前序、中序、后序)

    前置说明 不了解二叉树非递归遍历的可以看我之前的文章[数据结构与算法]二叉树模板及例题 Morris 遍历 概述 Morris 遍历是一种遍历二叉树的方式,并且时间复杂度O(N),额外空间复杂度O(1 ...

  4. PHP实现二叉树的深度优先遍历(前序、中序、后序)和广度优先遍历(层次)

    前言: 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次.要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历.中序遍历.后序遍历.具体说明如下: 前序遍 ...

  5. [leetcode] 二叉树的前序,中序,后续,层次遍历

    前序遍历 [144] Binary Tree Preorder Traversal 递归遍历 使用递归,先保存父节点的值,再对左子树进行遍历(递归),最后对右子树进行遍历(递归) vector< ...

  6. lintcode 66.67.68 二叉树遍历(前序、中序、后序)

    AC代码: /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode le ...

  7. 二叉树遍历(前序、中序、后序)-Java实现

    一.前序遍历 访问顺序:先根节点,再左子树,最后右子树:上图的访问结果为:GDAFEMHZ. 1)递归实现 public void preOrderTraverse1(TreeNode root) { ...

  8. Java实现二叉树的前序、中序、后序遍历(非递归方法)

      在上一篇博客中,实现了Java中二叉树的三种遍历方式的递归实现,接下来,在此实现Java中非递归实现二叉树的前序.中序.后序遍历,在非递归实现中,借助了栈来帮助实现遍历.前序和中序比较类似,也简单 ...

  9. Java实现二叉树的前序、中序、后序、层序遍历(非递归方法)

      在上一篇博客中,实现了Java中二叉树的四种遍历方式的递归实现,接下来,在此实现Java中非递归实现二叉树的前序.中序.后序.层序遍历,在非递归实现中,借助了栈来帮助实现遍历.前序和中序比较类似, ...

  10. 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...

随机推荐

  1. HDU 2412 Party at Hali-Bula

    树形DP水题.判断取法是否唯一,dp的时候记录一下每个状态从下面的子节点推导过来的时候是否唯一即可. #include<cstdio> #include<cstring> #i ...

  2. (简单) POJ 3268 Silver Cow Party,Dijkstra。

    Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to atten ...

  3. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  4. dedecms标签使用

    关键描述调用标签: <meta name="keywords" content="{dede:field name='keywords'/}">&l ...

  5. Tomcat配置文件Host元素属性介绍

    1.属性名:appBase.使用对象:all.含义:这一Host的Web应用程序目录的路径(Web应用程序和/或WAR文件驻留的目录).可以是CATALINA_HOME的相对路径,或者是绝对路径.默认 ...

  6. [转] 如何让CloudStack使用KVM创建Windows实例成功识别并挂载数据盘

    在使用kvm给windows虚拟机动态挂载virtio类型的硬盘时候遇到问题,通过下面的文章知道需要安装virtio驱动,从而解决问题使挂在正常,在此处mark一下 问题产生背景: 使用CloudSt ...

  7. ios页面跳转

    reference:http://blog.csdn.net/engandend/article/details/11706323 目前,就我所学到的内容,页面跳转有三种方法 一.直接推到下一个页面 ...

  8. iOS 加载动态库报错问题

    dyld: Library not loaded: @rpath Referenced from: Reason: no suitable image found.  Did find: 要么使用静态 ...

  9. 使用Linux自定义自动补全命令完善自己的shell脚本

    对于Linuxer来说,自动补全是再熟悉不过的一个功能了.当你在命令行敲下部分的命令时,肯定会本能地按下Tab键补全完整的命令,当然除了命令补全之外,还有文件名补全. Bash-completion ...

  10. 环信 之 iOS 客户端集成三:基础功能

    SDK中,大部分与网络有关的操作,都有三种方法: 同步方法 通过delegate回调的异步方法.要想能收到回调,必须要注册为:[[EaseMob sharedInstance].chatManager ...