获取指定长度得全部序列

通过事件来表述这个序列,即n重伯努利实验(二项分布)的全部可能结果。比如时间a表示为: a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 假设每次实验为从a中选择一个数字。那么进行n次实验,获得全部可能得序列。

比方,进行两次实验, n=2, 那么可能得结果有100个。这里由于每次实验都是相对独立的,所以每次实验的结果可能出现反复,也就是说在获得全部可能的序列中,能够存在反复得值。

递归实现,DFS(深度优先遍历)

def gen_all_sequence_dfs(outcomes, length):
"""
generate all sequence by dfs outcomes: all the possible event, a list
length: how many times does the sequence repeat, sequence length
""" res = []
seq = []
dfs_sequence(outcomes, length, seq, res) return res def dfs_sequence(outcomes, length, seq, res):
"""
deep first search
"""
if 0 == length:
res.append(tuple(seq[:]))
return for key in outcomes:
seq.append(key)
dfs_sequence(outcomes, length - 1, seq, res)
seq.pop() def run_dfs_example1():
"""
Example of all sequences
"""
print 'dfs gen all sequence'
outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) length = 2
seq_outcomes = gen_all_sequence_dfs(outcomes, length)
print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
print "Sequences were", seq_outcomes run_dfs_example1()

执行输出结果:

dfs gen all sequence
Computed 100 sequences of 2 outcomes
Sequences were [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (6, 8), (6, 9), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (7, 8), (7, 9), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 8), (8, 9), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9)]

非递归实现

利用动态规划的原理(这里我也不太熟悉是不是动态规划,暂且这么叫。假设有错误,请大家帮忙更正),动态的计算第k次实验后获得得全部得序列。

依据第k-1次实验的全部得序列得结果,然后把每一次结果拿出来计算这一次结果再加上一次实验(即第k次实验)能够获得的结果。

def gen_all_sequences(outcomes, length):
"""
Iterative function that enumerates the set of all sequences of
outcomes of given length Permutation allow repeat
""" ans = set([()])
for dummy_idx in range(length):
temp = set()
for seq in ans:
for item in outcomes:
new_seq = list(seq)
new_seq.append(item)
temp.add(tuple(new_seq))
ans = temp
return ans # example for digits
def run_example1():
"""
Example of all sequences
"""
print 'gen all sequence'
outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#outcomes = set(["Red", "Green", "Blue"])
#outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]) length = 2
seq_outcomes = gen_all_sequences(outcomes, length)
print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
print "Sequences were", seq_outcomes print '#############################################'
run_example1()

代码执行结果:

gen all sequence
Computed 100 sequences of 2 outcomes
Sequences were set([(7, 3), (6, 9), (0, 7), (1, 6), (3, 7), (2, 5), (8, 5), (5, 8), (4, 0), (9, 0), (6, 7), (5, 5), (7, 6), (0, 4), (1, 1), (3, 2), (2, 6), (8, 2), (4, 5), (9, 3), (6, 0), (7, 5), (0, 1), (3, 1), (9, 9), (7, 8), (2, 1), (8, 9), (9, 4), (5, 1), (7, 2), (1, 5), (3, 6), (2, 2), (8, 6), (4, 1), (9, 7), (6, 4), (5, 4), (7, 1), (0, 5), (1, 0), (0, 8), (3, 5), (2, 7), (8, 3), (4, 6), (9, 2), (6, 1), (5, 7), (7, 4), (0, 2), (1, 3), (4, 8), (3, 0), (2, 8), (9, 8), (8, 0), (6, 2), (5, 0), (1, 4), (3, 9), (2, 3), (1, 9), (8, 7), (4, 2), (9, 6), (6, 5), (5, 3), (7, 0), (6, 8), (0, 6), (1, 7), (0, 9), (3, 4), (2, 4), (8, 4), (5, 9), (4, 7), (9, 1), (6, 6), (5, 6), (7, 7), (0, 3), (1, 2), (4, 9), (3, 3), (2, 9), (8, 1), (4, 4), (6, 3), (0, 0), (7, 9), (3, 8), (2, 0), (1, 8), (8, 8), (4, 3), (9, 5), (5, 2)])

Permutation 获取全部排列

给定一个序列。比如上面给出得 a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 假设依照上面获取序列的算法,那么每次实验都作为独立得实现,序列中能够出现反复实验结果。

可是再获取排列的时候则不能依照n重伯努利实验得思想进行了。获取排列不同意有反复得结果,即一个元素仅仅能被选择一次。可是在排列中是存在元素得顺序因素得。也就是说相同得两个元素,不同得顺序为不同得排列。

非递归实现

在上面非递归算法得基础上。添加一个推断。推断该元素是否已经选择过就能够实现排列得获取。

def gen_permutations(outcomes, length):
"""
Iterative function that enumerates the set of all sequences of
outcomes of given length
Permutation not allow repeat
""" ans = set([()])
for dummy_idx in range(length):
temp = set()
for seq in ans:
for item in outcomes:
if item in seq:
continue
new_seq = list(seq)
new_seq.append(item)
temp.add(tuple(new_seq))
ans = temp
return ans # example for digits
def run_example1():
"""
Example of all sequences
"""
outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#outcomes = set(["Red", "Green", "Blue"])
#outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]) length = 2
seq_outcomes = gen_permutations(outcomes, length)
print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
print "Sequences were", seq_outcomes run_example1()

代码执行结果:

Computed 90 sequences of 2 outcomes
Sequences were set([(7, 3), (6, 9), (0, 7), (1, 6), (3, 7), (2, 5), (8, 5), (5, 8), (4, 0), (9, 0), (6, 7), (7, 6), (0, 4), (3, 2), (2, 6), (8, 2), (4, 5), (9, 3), (6, 0), (7, 5), (0, 1), (3, 1), (7, 8), (2, 1), (8, 9), (9, 4), (5, 1), (7, 2), (1, 5), (3, 6), (8, 6), (4, 1), (9, 7), (6, 4), (5, 4), (7, 1), (0, 5), (1, 0), (0, 8), (3, 5), (2, 7), (8, 3), (4, 6), (9, 2), (6, 1), (5, 7), (7, 4), (0, 2), (1, 3), (4, 8), (3, 0), (2, 8), (9, 8), (8, 0), (6, 2), (5, 0), (1, 4), (3, 9), (2, 3), (1, 9), (8, 7), (4, 2), (9, 6), (6, 5), (5, 3), (7, 0), (6, 8), (0, 6), (1, 7), (0, 9), (3, 4), (2, 4), (8, 4), (5, 9), (4, 7), (9, 1), (5, 6), (0, 3), (1, 2), (4, 9), (2, 9), (8, 1), (6, 3), (7, 9), (3, 8), (2, 0), (1, 8), (4, 3), (9, 5), (5, 2)])

递归实现

def gen_permutations_dfs(outcomes, length):
"""
Iterative function that enumerates the set of all sequences of
outcomes of given length
Permutation not allow repeat, DFS
""" res = []
seq = []
dfs_permutation(outcomes, length, seq, res) return res def dfs_permutation(outcomes, length, seq, res):
"""
deep first search
""" if 0 == length:
res.append(tuple(seq[:]))
return for key in outcomes:
if key in seq:
continue
seq.append(key)
dfs_permutation(outcomes, length - 1, seq, res)
seq.pop() # example for digits
def run_example2():
"""
Example of all sequences
"""
outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#outcomes = set(["Red", "Green", "Blue"])
#outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]) length = 2
seq_outcomes = gen_permutations_dfs(outcomes, length)
print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
print "Sequences were", seq_outcomes run_example2()

执行结果:

Computed 90 sequences of 2 outcomes
Sequences were [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 0), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 0), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 0), (3, 1), (3, 2), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 0), (4, 1), (4, 2), (4, 3), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (5, 7), (5, 8), (5, 9), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 7), (6, 8), (6, 9), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 8), (7, 9), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 9), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8)]

组合

组合与排列最大得差别是组合不关心顺序。所以组合得数量要比排列少。

,组合能够表示为

cmn

。从n个元素中选择m个元素。而且不关心顺序。

组合能够简单得在排列得结果得基础上去除不考虑顺序得情况下反复得结果就可以获得。

组合的计算公式:

cmn=n!m!(n−m)!

非递归实现

def gen_combination(outcomes, length):
"""
Iterative function that enumerates the set of all sequences of
outcomes of given length
Permutation not allow repeat
""" ans = set([()])
for dummy_idx in range(length):
temp = set()
for seq in ans:
for item in outcomes:
if item in seq:
continue
new_seq = list(seq)
new_seq.append(item)
temp.add(tuple(sorted(new_seq)))
ans = temp
return ans def run_example():
"""
Examples of sorted sequences of outcomes
"""
# example for digits
outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#outcomes = set(["Red", "Green", "Blue"])
#outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]) length = 2
seq_outcomes = gen_combination(outcomes, length)
print "Computed", len(seq_outcomes), "sorted sequences of", str(length) ,"outcomes"
print "Sequences were", seq_outcomes run_example()

执行结果:

Computed 45 sorted sequences of 2 outcomes
Sequences were set([(5, 9), (6, 9), (1, 3), (4, 8), (5, 6), (2, 8), (4, 7), (0, 7), (4, 6), (8, 9), (1, 6), (3, 7), (2, 5), (0, 3), (5, 8), (1, 2), (6, 7), (2, 9), (1, 5), (3, 6), (0, 4), (3, 5), (2, 7), (2, 6), (4, 5), (1, 4), (3, 9), (2, 3), (1, 9), (4, 9), (0, 8), (7, 9), (0, 1), (6, 8), (3, 4), (5, 7), (2, 4), (3, 8), (0, 6), (1, 8), (1, 7), (0, 9), (0, 5), (7, 8), (0, 2)])

组合的递归实现

def gen_combination_dfs(outcomes, length):
"""
Iterative function that enumerates the set of all sequences of
outcomes of given length
Permutation not allow repeat, DFS
""" res = []
seq = []
idx = 0
dfs_combination(outcomes, length, idx, seq, res) return res def dfs_combination(outcomes, length, idx, seq, res):
"""
deep first search
"""
if idx + length > len(outcomes):
return if 0 == length:
res.append(tuple(seq[:]))
return for i in range(idx, len(outcomes) - length + 1):
seq.append(outcomes[i])
dfs_combination(outcomes, length - 1, i + 1, seq, res)
seq.pop() def run_example2():
"""
Examples of sorted sequences of outcomes
"""
# example for digits
print "dfs combination"
outcomes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
#outcomes = set(["Red", "Green", "Blue"])
#outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]) length = 2
seq_outcomes = gen_combination_dfs(outcomes, length)
print "Computed", len(seq_outcomes), "sorted sequences of", str(length) ,"outcomes"
print "Sequences were", seq_outcomes run_example2()

执行结果:

Computed 45 sorted sequences of 2 outcomes
Sequences were [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

排列组合相关算法 python的更多相关文章

  1. leetcode排列组合相关

    目录 78/90子集 39/40组合总和 77组合 46/47全排序,同颜色球不相邻的排序方法 78/90子集 输入: [1,2,2] 78输出: [[], [1], [2], [1 2], [2], ...

  2. w3cshool -- 排列组合去重算法挑战

    function permAlone(str) { if(str.length == 1) return str; var a = str.substr(0, 1), one = [a], count ...

  3. python自带的排列组合函数

    需求: 在你的面前有一个n阶的台阶,你一步只能上1级或者2级,请计算出你可以采用多少种不同的方法爬完这个楼梯?输入一个正整数表示这个台阶的级数,输出一个正整数表示有多少种方法爬完这个楼梯. 分析:提炼 ...

  4. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  5. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

  6. C# 排列组合

    排列组合的概念 排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(Arrangement). 组合:从m个不同的元素中,任取n(n≤m)个元 ...

  7. C#的排列组合类

    C#的排列组合类 //-----------------------------------------------------------------------------//// 算法:排列组合 ...

  8. python算法-排列组合

    排列组合 一.递归 1.自己调用自己 2.找到一个退出的条件 二.全排列:针对给定的一组数据,给出包含所有数据的排列的组合 1:1 1,2:[[1,2],[2,1]] 1,2,3:[[1,2,3],[ ...

  9. Python算法题(二)——国际象棋棋盘(排列组合问题,最小的K个数)

    题目一(输出国际象棋棋盘)  分析: 用i控制行,j来控制列,根据i+j的和的变化来控制输出黑方格,还是白方格.   主要代码: for i in range(8): for j in range(8 ...

随机推荐

  1. anthelion编译

    编程工程 $ cd ./anthelion/anthelion/target/classes$ java -Xmx15G -cp ../Anthelion-1.0.0-jar-with-depende ...

  2. RT3070 USB WIFI 在连接socket编程过程中问题总结

    最近耗时多天,成功的将RT3070驱动.并解决了socket的网络编程,成功的在BA9G10上面实现了USB wif.连上家里的无线路由器,通过ubuntu下面建立的服务端程序,将BA9G10中的数据 ...

  3. php获取server端mac和clientmac的地址

    获取servermac <?php /** 获取网卡的MAC地址原码:眼下支持WIN/LINUX系统 获取机器网卡的物理(MAC)地址 **/ class GetmacAddr{ var $re ...

  4. [C++]引用浅析

    Date:2013-12-22 Summary: 引用数据类型的一些概念记录(沟通中提到引用必须结合语境才能知道说的是引用变量还是“引用”这一行为,再次提到引用指的一般是引用变量) Contents: ...

  5. [SVN]两个分支合并

    Date:2014-1-1 Summary: 记录一下自己使用SVN时候的操作步骤,先吃鱼,再学钓鱼 Contents: 环境:从同事的branch迁出一份代码,作为自己的分支进行开发,同时同事也在自 ...

  6. 开源搜索引擎评估:lucene sphinx elasticsearch

    开源搜索引擎评估:lucene sphinx elasticsearch 开源搜索引擎程序有3大类 lucene系,java开发,包括solr和elasticsearch sphinx,c++开发,简 ...

  7. 主流JavaScript框架(Dojo、Google Closure、jQuery、Prototype、Mootools和YUI)的分析和对比

    本文主要选取了目前比较流行的JavaScript框架Dojo.Google Closure.jQuery.Prototype.Mootools和YUI进行对比,主要是根据网上的资料整理而成,希望可以供 ...

  8. android一个上传图片的样例,包含怎样终止上传过程,假设在上传的时候更新进度条(一)

    先上效果图: Layout为: <? xml version="1.0" encoding="utf-8"?> <LinearLayout x ...

  9. Objective-c 算术函数和常量代表

    不变 常量名 说明 M_PI 圆周率(=π) M_PI_2 圆周率的1/2(=π/2) M_PI_4 圆周率的1/4(=π/4) M_1_PI =1/π M_2_PI =2/π M_E =e M_LO ...

  10. POJ题目分类【实在是不知道哪个是原创了】

    原地址:http://blog.csdn.net/liuqiyao_01/article/details/8477801 初期:一.基本算法:     (1)枚举. (poj1753,poj2965) ...