前言:

本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验中学习率需要自己来选择,因此我们应该从小到大(比如从0.001到10)来选择,通过观察损失值与迭代次数之间的函数曲线来决定使用哪个学习速率。当有了学习速率alpha后,则本问问题求解方法和上面的没差别。

本文要解决的问题是给出了47个训练样本,训练样本的y值为房子的价格,x属性有2个,一个是房子的大小,另一个是房子卧室的个数。需要通过这些训练数据来学习系统的函数,从而预测房子大小为1650,且卧室有3个的房子的价格。

实验基础:

dot(A,B):表示的是向量A和向量B的内积。

又线性回归的理论可以知道系统的损失函数如下所示:

    其向量表达形式如下:

当使用梯度下降法进行参数的求解时,参数的更新公式如下:

当然它也有自己的向量形式(程序中可以体现)。

实验结果:

测试学习率的结果如下:

由此可知,选用学习率为1时,可以到达很快的收敛速度,因此最终的程序中使用的学习率为1.

最终使用梯度下降法和公式法的预测结果如下:

可以看出两者的结果是一致的。

实验主要程序及代码:

%% 方法一:梯度下降法
x = load('ex3x.dat');
y = load('ex3y.dat'); x = [ones(size(x,1),1) x];
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) = (x(:,3)-meanx(3))./sigmax(3); figure
itera_num = 100; %尝试的迭代次数
sample_num = size(x,1); %训练样本的次数
alpha = [0.01, 0.03, 0.1, 0.3, 1, 1.3];%因为差不多是选取每个3倍的学习率来测试,所以直接枚举出来
plotstyle = {'b', 'r', 'g', 'k', 'b--', 'r--'}; theta_grad_descent = zeros(size(x(1,:)));
for alpha_i = 1:length(alpha) %尝试看哪个学习速率最好
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
for i = 1:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (1/sample_num).*x'*(x*theta-y);
theta = theta - alpha(alpha_i).*grad;
end
plot(0:49, Jtheta(1:50),char(plotstyle(alpha_i)),'LineWidth', 2)%此处一定要通过char函数来转换
hold on if(1 == alpha(alpha_i)) %通过实验发现alpha为1时效果最好,则此时的迭代后的theta值为所求的值
theta_grad_descent = theta
end
end
legend('0.01','0.03','0.1','0.3','1','1.3');
xlabel('Number of iterations')
ylabel('Cost function') %下面是预测公式
price_grad_descend = theta_grad_descent'*[1 (1650-meanx(2))/sigmax(2) (3-meanx(3)/sigmax(3))]' %%方法二:normal equations
x = load('ex3x.dat');
y = load('ex3y.dat');
x = [ones(size(x,1),1) x]; theta_norequ = inv((x'*x))*x'*y
price_norequ = theta_norequ'*[1 1650 3]'

参考资料:

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html

Deep learning:二(linear regression练习)

作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。

转载 Deep learning:三(Multivariance Linear Regression练习)的更多相关文章

  1. 转载 Deep learning:二(linear regression练习)

    前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...

  2. 转载 Deep learning:四(logistic regression练习)

    前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage ...

  3. Multivariance Linear Regression练习

    %% 方法一:梯度下降法 x = load('E:\workstation\data\ex3x.dat'); y = load('E:\workstation\data\ex3y.dat'); x = ...

  4. 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

    在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...

  5. [转载]Deep Learning(深度学习)学习笔记整理

    转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...

  6. Andrew Ng Machine Learning 专题【Linear Regression】

    此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...

  7. 转载 deep learning:八(SparseCoding稀疏编码)

    转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因 ...

  8. 转载 Deep learning:六(regularized logistic回归练习)

    前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...

  9. CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance

    源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...

随机推荐

  1. strrchr

    strrchr() 函数查找字符在指定字符串中从正面开始的最后一次出现的位置,如果成功,则返回从该位置到字符串结尾的所有字符,如果失败,则返回 false.与之相对应的是strchr()函数,它查找字 ...

  2. 为什么推荐Zookeeper作注册中心

    Zookeeper的数据模型很简单,有一系列被称为ZNode的数据节点组成,与传统的磁盘文件系统不同的是,zk将全量数据存储在内存中,可谓是高性能,而且支持集群,可谓高可用,另外支持事件监听.这些特点 ...

  3. Gentoo安装详解(五)-- 安装X桌面环境

    安装X桌面环境: 安装Xorg: 检测显卡信息: dmesg | grep video lspci | grep -i VGA 配置INPUT_DEVICE.VIDEO_CARDS变量: 在安装Xor ...

  4. ajax传递的数据类型json传递

    $(".del_goods").click(function(){ //删除选中的商品 var clear_data = [];//数组 $("input[name='c ...

  5. php 好用的函数

    extract — 从数组中将变量导入到当前的符号表,数组的键将作为新的变量,数组的值将最为新变量的值

  6. Oracle Day3 多行函数、多表查询

    1.多行函数 Sum avg max min count 组函数具有滤空的作用(添加nvl屏蔽该功能) 分组group by 多行分组 分组过滤 where 和分组过滤的区别(having) 分组的增 ...

  7. OutputDebugString输出调试信息到debugtrack

    OutPutDebugString()函数的输出则可以用DebugView捕获(DebugView也可以捕获TRACE宏的输出)eg: OutPutDebugString("输出第一调试信息 ...

  8. hdu_5676_ztr loves lucky numbers

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5676 在这%一下安神,用了我没见过的黑科技next_permutation,至少我是今天才知道的 #i ...

  9. spark第二篇--基本原理

    ==是什么 == 目标Scope(解决什么问题) 在大规模的特定数据集上的迭代运算或重复查询检索 官方定义 aMapReduce-like cluster computing framework de ...

  10. vim编程配置方法

    vim简介Vim 有以下几个模式:1) 正常(normal)模式,缺省的编辑模式:下面如果不加特殊说明,提到的命令都直接在正常模式下输入:任何其它模式中都可以通过键盘上的 Esc 键回到正常模式.2) ...