题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27016

题意:求一个连通图去掉任意一个点以及与它相连的边,图中的所有蚂蚁可以通过某些点中建造的矿井逃到地面,求最少要在图中的几个点中建造矿建,这样建造矿井的方案的总数。

思路:首先求点双连通分量,标记割点,然后我们可以分析,若一个连通分量中有且仅有一个割点,那么除了这个割点之外,别的点都能造矿井,且只需在除了这个割点之外的某个点上造一座矿井就可以了(假设破话的是这个割点,那么这个连通分量中的蚂蚁可以通过有矿井的点逃到表面,但是如果矿井恰好造在割点上,那么一旦去掉了割点之后,蚂蚁就无法逃到地面上去了(这就是为什么不选割点的原因)。至于为什么别的点可以呢,假设破话的点恰好就是有矿井的这个点,那么这个连通分量中的蚂蚁可以通过割点跑到别的点双连通分量中逃生)。然后我们就只需要找有且只有一个割点的点双连通分量有多少个就行了,然后在每个连通分量中选择任何一个不是割点的点建造矿井就行了,至于有多少种方案,也就好求了,直接连通分量的点的个数(除去割点)相乘即可。然后我想说一下为什么对于那些点连通分量中割点大于等于2的就不用选呢,其实我们画一下图就知道了,因为破话这个连通分量的任何一个点以及与它相连的边,这个连通分量的中蚂蚁还是可以通过其中一个割点跑到另一个连通分量中去逃生。这样我们就得到了割点数目等于1和大于等于2的情况,那么对于图中没有割点的情况我们应该怎么选,这也好办,画个图就明白了,只需任选两个点建造矿井就可以了,当破话了某个有矿井的点之后,蚂蚁可以通过另一个有矿井的点逃生,那么总的方案数为n*(n-1)/2。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
using namespace std;
#define MAXN 22222
typedef long long ll;
typedef unsigned long long llu; struct Edge{
int v,next;
}edge[MAXN<<]; int n,m,NE;
int head[MAXN]; void Insert(int u,int v)
{
edge[NE].v=v;
edge[NE].next=head[u];
head[u]=NE++;
} int cnt,bcc_count,cut_count;
int low[MAXN],dfn[MAXN];
vector<vector<int> >blocks;
bool mark[MAXN];
bool is_cutpoint[MAXN];
stack<int>S; void Tarjan(int root,int u,int father)
{
int rt_son=;
low[u]=dfn[u]=++cnt;
mark[u]=true;
S.push(u);
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(v==father)continue;
if(dfn[v]==){
Tarjan(root,v,u);
low[u]=min(low[u],low[v]);
if(u==root)rt_son++;
if(low[v]>=dfn[u]){
int x;
do{
x=S.top();
S.pop();
mark[x]=false;
blocks[bcc_count].push_back(x);
}while(v!=x);
blocks[bcc_count].push_back(u);
bcc_count++;
if(u!=root)is_cutpoint[u]=true;
}
}else if(mark[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(u==root&&rt_son>=)is_cutpoint[u]=true;
} int main()
{
int _case,u,v,t=;
scanf("%d",&_case);
while(_case--){
scanf("%d%d",&n,&m);
NE=;
memset(head,-,sizeof(head));
blocks.clear();
blocks.resize(n+);
while(!S.empty())S.pop();
while(m--){
scanf("%d%d",&u,&v);
Insert(u,v);
Insert(v,u);
}
cnt=bcc_count=;
memset(mark,false,sizeof(mark));
memset(is_cutpoint,false,sizeof(is_cutpoint));
memset(dfn,,sizeof(dfn));
Tarjan(,,-);
ll ans=;
llu ways=;
int cut_count=;
for(int i=;i<n;i++)if(is_cutpoint[i])cut_count++;
if(cut_count==){
printf("Case %d: %d %d\n",t++,,n*(n-)/);
continue;
}
for(int i=;i<bcc_count;i++){
cnt=;
for(int j=;j<blocks[i].size();j++){
int v=blocks[i][j];
if(is_cutpoint[v])cnt++;
}
if(cnt<){
ans++;
ways*=(llu)(blocks[i].size()-);
}
}
printf("Case %d: %lld %llu\n",t++,ans,ways);
}
return ; }

loj 1308(点双连通分量应用)的更多相关文章

  1. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  2. 【Codefoces487E/UOJ#30】Tourists Tarjan 点双连通分量 + 树链剖分

    E. Tourists time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard inpu ...

  3. 【BZOJ-2730】矿场搭建 Tarjan 双连通分量

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1602  Solved: 751[Submit][Statu ...

  4. hihoCoder 1184 连通性二·边的双连通分量

    #1184 : 连通性二·边的双连通分量 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在基本的网络搭建完成后,学校为了方便管理还需要对所有的服务器进行编组,网络所的老 ...

  5. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  6. 点/边 双连通分量---Tarjan算法

    运用Tarjan算法,求解图的点/边双连通分量. 1.点双连通分量[块] 割点可以存在多个块中,每个块包含当前节点u,分量以边的形式输出比较有意义. typedef struct{ //栈结点结构 保 ...

  7. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  8. poj3177 && poj3352 边双连通分量缩点

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12676   Accepted: 5368 ...

  9. 【POJ 2942】Knights of the Round Table(点双连通分量,二分图染色)

    圆桌会议必须满足:奇数个人参与,相邻的不能是敌人(敌人关系是无向边). 求无论如何都不能参加会议的骑士个数.只需求哪些骑士是可以参加的. 我们求原图的补图:只要不是敌人的两个人就连边. 在补图的一个奇 ...

随机推荐

  1. C#线程 在某一时间内,只有N个线程在并发执行,其余都在队列中的实现(转载)

    具体的需求是 在某一时间点,只有N个线程在并发执行,如果有多余的线程,则排队等候~ 还真是费尽心思啊~最终还是被我攻克了~ 下面我就来说说具体的实现 C#提供了Mutex与Interlocked这两个 ...

  2. 通过cmd修改注册表并设置cmd窗口的大小

    设置cmd的窗口 mode: modem设置系统设备,主要是lpt1, com1/2, con: 启动时设置窗口大小: cmd /k "mode con: cols=120 lines=40 ...

  3. javascript常量

    javascript中没有常量的概念,虽然许多现代的变成环境可能为您提供了用以创建常量的const语句.对于的自己的变量,可以采用相同的命名约定,并且将他们以静态属性的方式添加到构造函数中. //构造 ...

  4. javascript常用排序算法总结

    算法是程序的灵魂.虽然在前端的开发环境中排序算法不是很经常用到,但常见的排序算法还是应该要掌握的.我在这里从网上整理了一下常见排序算法的javascript实现,方便以后查阅. 归并排序: 1 fun ...

  5. ACM Computer Factory(dinic)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5596   Accepted: 1 ...

  6. C# params关键字

    params数组的要点 C#开发语言中 params 是关键字,可以指定在参数数目可变处采用参数的方法参数.在函数的参数数目可变而执行的代码差异很小的时候很有用! class Program { st ...

  7. Coursera台大机器学习课程笔记11 -- Nonlinear Transformation

    这一节讲的是如何将线性不可分的情况转为非线性可分以及转换的代价.特征转换是机器学习的重点. 最后得出重要的结论是,在做转换时,先从简单模型,再到复杂模型. 参考:http://www.cnblogs. ...

  8. Linux lsof详解

    简介 lsof(list open files)是一个列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件.所以如传输控 ...

  9. 友盟消息推送和更新XML配置

    <receiver android:name="com.umeng.message.NotificationProxyBroadcastReceiver" android:e ...

  10. 以Python角度学习Javascript(二)之DOM

    HTML DOM 定义了访问和操作 HTML 文档的标准方法. DOM 将 HTML 文档表达为树结构. 文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文 ...