http://acm.tju.edu.cn/toj/showp3540.html3540.   Consumer


Time Limit: 2.0 Seconds   Memory Limit: 65536K
Total Runs: 136   Accepted Runs: 67

FJ is going to do some shopping, and before that, he needs some boxes to carry the different kinds of stuff he is going to buy. Each box is assigned to carry some specific kinds of stuff (that is to say, if he is going to buy one of these stuff, he has to buy the box beforehand). Each kind of stuff has its own value. Now FJ only has an amount of W dollars for shopping, he intends to get the highest value with the money.

Input

The first line will contain two integers, n(the number of boxes 1 ≤ n ≤ 50), w (the amount of money FJ has, 1 ≤ w ≤ 100000) Then n lines follow. Each line contains the following number pi (the price of the ith box 1 ≤ pi ≤ 1000), mi (1 ≤ mi ≤ 10 the number goods i-th box can carry), and mi pairs of numbers, the price cj (1 ≤ cj ≤ 100), the value vj (1 ≤ vj ≤ 1000000).

Output

For each test case, output the maximum value FJ can get

Sample Input

3 800
300 2 30 50 25 80
600 1 50 130
400 3 40 70 30 40 35 60

Sample Output

210

【题目大意】给若干组物品,每组物品都有一个箱子(箱子自身也有cost),然后就是物品的cost和value,要买某个物品必须也要买装这个物品的箱子,给一定钱数,问能获得的最大价值。

解题思路:对每个箱子的附件进行一次01背包,背包的容量是总花费-箱子的花费,得到的就是对应每个附件的最大价值;然后再对这个箱子进行一次01背包,箱子的价值dpbox[i-p]与不取这个箱子的价值dptotal[i]那个大取哪个,模模糊糊知道大体思路

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX = + ;
int dptotal[MAX],dpbox[MAX];
int price,value,n,w,p,c,m;
int main()
{
while(scanf("%d%d", &n,&w) != EOF)
{
memset(dptotal, , sizeof(dptotal));
for(int i = ; i < n; i++)
{
scanf("%d%d",&p,&m);
memcpy(dpbox, dptotal, sizeof(dptotal));
for(int k = ; k <= m; k++)
{
scanf("%d%d",&price,&value); for(int j = w - p; j >= price; j--)
{
dpbox[j] = max(dpbox[j], dpbox[j - price] + value);
}
}
for(int k = w; k >= p; k--)
{
if(dptotal[k] < dpbox[k - p])
dptotal[k] = dpbox[k - p];
}
}
printf("%d\n",dptotal[w]);
}
return ;
}

 

TOJ3540Consumer(有依赖的背包)的更多相关文章

  1. RONOJ 6今明的预算方案(有依赖的背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  2. C. Coin Troubles 有依赖的背包 + 完全背包变形

    http://codeforces.com/problemset/problem/283/C 一开始的时候,看着样例不懂,为什么5 * a1 + a3不行呢?也是17啊 原来是,题目要求硬币数目a3 ...

  3. 有依赖的背包---P1064 金明的预算方案

    P1064 金明的预算方案 solution 1 暴搜 70pt dfs (当前搜到了第几个物品,产生的总价值,剩下多少钱) 剪枝 1:如果剩下的钱数<0,直接return就好,没必要继续了 剪 ...

  4. AcWing 286. 选课 (树形依赖分组背包)打卡

    有依赖的背包 首先依赖的概念,就是一个东西依附与一个东西之上,我们想买附品的话必须要把主品先买下来,这个可以先做下这道题 https://www.cnblogs.com/Lis-/p/11047466 ...

  5. CSU - 1580 NCPC2014 Outing(树形依赖+分组背包)

    Outing Input Output Sample Input 4 4 1 2 3 4 Sample Output 4 分组背包: for 所有的组k for v=V..0 for 所有的i属于组k ...

  6. hdu 3449 Consumer (依赖01背包)

    题目: 链接:pid=3449">点击打开链接 题意: 思路: dp[i][j]表示前i个箱子装j钱的材料可以得到的最大价值. 代码: #include<iostream> ...

  7. Luogu1064 金明的预算方案 (有依赖的背包)

    枚举多个状态 #include <iostream> #include <cstdio> #include <cstring> #include <algor ...

  8. hdu4044 依赖背包变形 好题!

    由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

  9. HDU 1561 The more, The Better【树形DP/有依赖的分组背包】

    ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先 ...

随机推荐

  1. Python-json 和 pickle

    这是用于序列化的两个模块 json:用于字符串和python数据类型间进行转换 pickle:用于python特有的类型和python的数据类型间进行转换 json模块提供了四个功能:dumps du ...

  2. 在Centos5下安装GraphicsMagick

    安装GraphicsMagick的流水账: 安装参照的http://www.graphicsmagick.org/INSTALL-unix.html 解压 /home/milton/GraphicsM ...

  3. jquery 现实多状态控件 (status & power(2,0)) = power(2,0)

    数据库表设计的时候,会有很些多状态的需求,比如招聘职位需要同时发布到武汉,广州,上海 实现方法有很多种,我选择了在职位表中建一个 int 型字段保存多种状态,这个涉及到一些算法,我要查询武汉和广州的职 ...

  4. webpack+react+redux+es6

    一.预备知识 node, npm, react, redux, es6, webpack 二.学习资源 ECMAScript 6入门 React和Redux的连接react-redux Redux 入 ...

  5. JS 之DOM对象(2)

    http://www.cnblogs.com/zourong/p/4792394.html 这篇文件介绍了DOM1中的一些属性和方法,下面的内容主要介绍DOM2和DOM3中新增的内容. 框架的变化 框 ...

  6. redis async client 与自有框架集成

    hiredis的异步接口已经支持ae libuv libev 和 libevent集成,具体头文件可以参见redis/deps/hiredis/adapters,样例参见redis/deps/hire ...

  7. Unity3D 2D游戏中寻径算法的一些解决思路

    需求 unity3d的3d开发环境中,原生自带了Navigation的组件,可以很便捷快速的实现寻路功能.但是在原生的2d中并没有相同的功能. 现在国内很多手机游戏都有自动寻路的功能,或者游戏中存在一 ...

  8. php上传图片---初级版

    没有样式,没有淘宝的那种放大截取大小的效果,只是实现了图片上传的功能. 图片超过100k,会出现内部错误服务器错误,需要手动更改配置文件里的MaxRequestLen属性. 下面粘上代码: <? ...

  9. jdbc基础 (三) 大文本、二进制数据处理

    LOB (Large Objects)   分为:CLOB和BLOB,即大文本和大二进制数据 CLOB:用于存储大文本 BLOB:用于存储二进制数据,例如图像.声音.二进制文件 在mysql中,只有B ...

  10. 微信第一个“小程序”亮相:不是APP胜似APP!

    前天晚上,微信终于推出了“小程序”功能.看过效果演示之后,网友表示,好多App可以卸载了! 据了解,微信“小程序”已首批开放给200名拥有微信服务号的开发者进行内测,而且目前开发者发布的小程序无法在用 ...