NOIP2016初赛总结(提高组)
题目:https://www.zhihu.com/question/51865837/answer/127892121
注:我是HE的,不是JS的,照片是ZYJ神犇的
单选
一、单项选择题(共15 题,每题1.5 分,共计22.5 分;每题有且仅有一个正确
选项)
1. 以下不是微软公司出品的软件是( )。
A. Powerpoint B. Word
C. Excel D. Acrobat Reader
2. 如果开始时计算机处于小写输入状态,现在有一只小老鼠反复按照CapsLock、
字母键A、字母键S 和字母键D 的顺序来回按键,即CapsLock、A、S、D、
S、A、CapsLock、A、S、D、S、A、CapsLock、A、S、D、S、A、……,
屏幕上输出的第81 个字符是字母( )。
A. A B. S C. D D. a
3. 二进制数00101100 和01010101 异或的结果是( )。
A. 00101000 B. 01111001 C. 01000100 D. 00111000
4. 与二进制小数0.1 相等的八进进制数是( )。
A. 0.8 B. 0.4 C. 0.2 D. 0.1
5. 以比较作为基本运算,在N 个数中找最小数的最少运算次数为( )。
A. N B. N-1 C. N2 D. log N
6. 表达式a*(b+c)-d 的后缀表达形式为( )。
A. abcd*+- B. abc+*d- C. abc*+d- D. -+*abcd
7. 一棵二叉树如右图所示,若采用二叉树链表存储该二叉
树(各个结点包括结点的数据、左孩子指针、右孩子指
针)。如果没有左孩子或者右孩子,则对应的为空指针。
那么该链表中空指针的数目为( )。
A. 6 B. 7 C. 12 D. 14
8. G 是一个非连通简单无向图,共有28 条边,则该图至少有( )个顶点。
A. 10 B. 9 C. 8 D. 7
9. 某计算机的CPU 和内存之间的地址总线宽度是32 位(bit),这台计算机最
多可以使用( )的内存。
A. 2GB B. 4GB C. 8GB D. 16GB
10. 有以下程序:
#include <iostream>
using namespace std;
int main() {
int k = 4, n = 0;
while (n < k) {
n++;
if (n % 3 != 0)
continue;
k--;
}
cout << k << "," << n << endl;
return 0;
}
程序运行后的输出结果是( )。
A. 2,2 B. 2,3 C. 3,2 D. 3,3
11. 有7 个一模一样的苹果,放到3 个一样的盘子中,一共有( )种放法。
A. 7 B. 8 C. 21 D. 37
12. Lucia 和她的朋友以及朋友的朋友都在某社交网站上注册了账号。下图是他们
之间的关系图,两个人之间有边相连代表这两个人是朋友,没有边相连代表
不是朋友。这个社交网站的规则是:如果某人A 向他(她)的朋友B 分享了
某张照片,那么B 就可以对该照片进行评论;如果B 评论了该照片,那么他
(她)的所有朋友都可以看见这个评论以及被评论的照片,但是不能对该照
片进行评论(除非A 也向他(她)分享了该照片)。现在Lucia 已经上传了
一张照片,但是她不想让Jacob 看见这张照片,那么她可以向以下朋友( )
分享该照片。
A. Dana, Michael, Eve B. Dana, Eve, Monica
C. Michael, Eve, Jacob D. Micheal, Peter, Monica
13. 周末小明和爸爸妈妈三个人一起想动手做三道菜。小明负责洗菜、爸爸负责
切菜、妈妈负责炒菜。假设做每道菜的顺序都是:先洗菜10 分钟,然后切
菜10 分钟,最后炒菜10 分钟。那么做一道菜需要30 分钟。注意:两道不
同的菜的相同步骤不可以同时进行。例如第一道菜和第二道的菜不能同时洗,
也不能同时切。那么做完三道菜的最短时间需要( )分钟。
A. 90 B. 60 C. 50 D. 40
14. 假设某算法的计算时间表示为递推关系式
T(n) = 2T(n/4)+sqrt(n)
T(1) = 1
则算法的时间复杂度为( )。
A. O(n) B. O(sqrt(n)) C. O(sqrt(n) log n) D. O(n^2)
15. 给定含有n 个不同的数的数组L=<x1, x2, ..., xn>。如果L 中存在xi (
1 < i < n)
使得x1 < x2 < ... < xi-1 < xi > xi+1 > ... > xn, 则称L 是单峰的,并称xi 是L 的
“峰顶”。现在已知L 是单峰的,请把a-c 三行代码补全到算法中使得算法
正确找到L 的峰顶。
a. Search(k+1, n)
b. Search(1, k-1)
c. return L[k]
Search(1, n)
1. k←.n/2.
2. if L[k] > L[k-1] and L[k] > L[k+1]
3. then __________
4. else if L[k] > L[k-1] and L[k] < L[k+1]
5. then __________
6. else __________
正确的填空顺序是( )。
A. c, a, b B. c, b, a C. a, b, c D. b, a,
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAAFM0lEQVR4nO3bP2vqXBzA8fMOfAmdi0gQzdCpF6FddBJxjWiogoOYEkqHIlicShMwUwbJo3sQ2skpHbIfOmbKkDlky5pnONfWapX7M/+UnO9ogjl+mmviybkooP1zKO0BnFMUCxDFAkSxAFEsQBQLEMUCRLEAUSxAFAsQxQJEsQBRLEAUCxDFAkSxAFEsQBQLEMUCRLEAUSxAEWPZtq2qarfbvbm5QQjl8/lut/vy8oIxjvZAqRQl1mKxQAgpioIxdhwnCALXdTHG8/mcYRhJkiI8VipFhoUxRgiZpnlgq6ZpUR0ulSLDkmWZZVnf9/ftIIribDaL6nCpFBmWbduFQkFRlF+3KoqCEDIMI6rDpVKUWBjjbrdbLBYVRdHXKYpSq9UqlQqR8jzPtu2oDppw0WBhjHO5HOHAGMuy/N868n3/tacsy7lc7kwvjhFgEal///LmOO5MvcJiQaVIZ+oVCus4KdI5eh2PRaRGo9HR78Bx3MXFhed5R79Dwh2JRaQ4jgt5eI7jGIY5F69jsKKSIp2RFxgrWinSuXjBsOKQIp2FFwArPinS6Xv9goUxNjYiL9q2HasUactrcxincJPxjeV5nqqqt7e3DMOI61qtFkJoPB5/fn7KspzAgDRNs21bEASEUKvV+hoJwzCVSmXfD/Vk+sZqNBrlctmyrK09XNdVFKVQKCTzt8UYk9kL13W3NlmWVS6X2+12AsP4tb9YhmGUy2Uyvbmb7/s8zycz1Tkej3me37fVcZxSqZTWVM9fLDKTue/c8X2fZVlVVRMY0Gg04nl+3ySiaZoHxhl33/8MR6NRqVQyTXNroBjjTqfTaDSSuU7Ztv3nzx+e57dEXNddrVYIocfHx7SumD+uhpqmPTw8IIQYhhkOh9VqFSHUbDYXi0UC4xsMBmRekFxqms0mQqharQ6HQ4ZhEEKiKBqGIctyWncYv99n2bad8NV6300WuY/Zej2tO7KTeMh6xIdPxSt9rKM/dvJeKWOF/MAJe6WJFclHTdIrNawIP2RiXulgRf7xkvFKAYs8qoj8UWsCXkljxfpQJ26vRLESePx1fX3NMExMbx4vFsZYVVVBEPr9/t3d3dXV1evr63K5jO+Inuc9PT0tFovxeNzr9fr9Ps/z0+lU07TwZ1xcWJ7nCYLAMIyiKKZpWpZlWRZZ2Far1er1ekznl6qqCKHJZLJarax1uq53Op18Ph/y7xQX1ng8Zln21wkyMjtWqVQiP+jb29uBBXVk2VOYC0tcWP1+f7Va7dvqOA5C0R+aLNo5sAPLsmEmDuPCkiRp39QrObPq9XrkB/34+Dh8ZuXz+VM8szzPkySJrMf9+vowTXM+nxeLRZ7nY1rStlgsCoXC8/OzrutfX5S6rm8uqDu6eK+Gtm2TC1O73W6324IgqKoa9zSZ53mapk2n0/a62WwmSVL4u5b0p2gSK/xdXoawgtBe2cIKwnllDisI4ZVFrOBYr4xiBWsv0A/G7GIF8CmdTGMFQK+sYwUQL4oVBEHAcdzl5eX7+/vu0+/Nso5lGIYoimR5x2AwGA6H5D/gjkaj3V+vmcYi81+6rm8tnHMcZzKZ7K7fyzQWkdq3dTKZdLvdH/vHP6TT7cDkVxAEiqL0er0f+8c/pNONzLjtzuj6vk/moD8+PjZfzzRWEATL5bLRaCCE7u/vNxdoi6K4+2Mo61gkz/N2l/7vRrEAUSxAFAsQxQJEsQBRLEAUCxDFAkSxAFEsQBQLEMUCRLEAUSxAFAsQxQJEsQBRLEAUCxDFAkSxAP0PguUDLs63DFYAAAAASUVORK5CYII=" alt="" />
(第7题图)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdgAAAEcCAIAAADrwjJsAAAgAElEQVR4nO2dy44sORGG/WJ01dOgAxJCGsQCZqrS7wF7noFNd73C0QwSCzZsmM0IIY0Ei8mqZBGnY6LtTJfTdzv/b3HUJy9O22n/FRkO22oBAABQFVU7AwAAcHQgxAAAUBkIMQAAVAZCDAAAlYEQAwBAZSDEAABQGQgxAABUBkIMAACVgRADAEBlIMQAAFAZCDEAAFQGQgwAAJWBEAMAQGUgxAAAUBkIMQAAVAZCDAAAlYEQA9A3SindP7VrsTIQYlAB1T+1q/BnmspMGBDi7l8h6JHeO15T+Q8Q4re3N7JDH49Hjiztpan6rAKEGFSg947XVP53CfE0TQ1a903VZxXqvwNwQNwd73q9ThZa69vtViyHbpoSDn8lZRWm+tRaN6LFTdVnFSDEoALujufwzM7zXCyTDpoSDn8ZXdVcVufU+dpBU/VZBQgxqICPED8E5NOk429vb6WyuUlTwhEpxG9vb2Qj85HH46G13voWobLLC/g4HQyonKbqswoQYlABHyFevcuQDGaeZ/e4k/uCp7fbOfG/ODd7hfjp9e4okdWzhut59R05aKo+qwAhBhUIE+LH42GfMhRB6ikduVwuq4KyrI1cecpxU8LhL8TzPD8trPFrxx8i8nHydqNi7et9aKo+qwAhBhUIE2LjFH1TK6Wu1yt9FNN/OXFpoGmtT6eTUup8PtNZvt643WdIsCnh2KV6XGkMVwhxPp9Xf65YtY23Q2elCQwhDgBCDCoQKcQ0ZEfGl0zKGHcydNlI2X4K3e4jCk0Jx17V47sM7GsejwdXKQ+TGlfabwFCHACEGFQgUojv97uRDo0vkTXnkFrjCI/7yds9hbgdPFVv1RHxeDy40qg2brfbaqyxFGIZu6IhxCmAEIMKuDveUyG2j6wad0+FWItAWsZHFJoSDk/Vc5ROnuJ6MLztEOKsQIhBBcKE2BisY3cnR1ntsoiv1+vq7aMK8Va8MFcjWcRblQYhzgqEGFQgTIj1xwF9Uhb7Ak8hVlaUla0pYfkvjL/qsbXLBb/f73xQXsO32PINIc4BhBhUIEyI6Tjfa1+2Oli3mrJeC0kefrCOPylsjKCIVfgCCHFyIMSgAj5CLMejpBuBJYN083w+G9f4CLH9FL59YCFe3tddo0i+1fLebjdZk/RbxTPoKI5Cuo/f3t6maZLTHeV0O0+aqs8qQIhBBXyE2Mbo3rZ9528RL9bsBr7dR0SaEo695meDNFWfVej+FYIeSdjxyJ4NW4CCl+WVt/tMrmtKOCDEA9D9KwQ90nvHayr/EOIB6P4Vgh7pveM1lX8I8QB0/wpBj/Te8ZrK/5ZLvSOaqs8qQIhBBTjUoVOMhXIGRntPoQYxoIpBi1BExOVy2brARx30mp1FKTeyaWb7QIjLgCoGLUJfrGFnGYeI7A10PSwQ4jKgikFbnM/ny+XiWBSY3Bo+STlExD+RgwMhLgOqGLSCT5/fO7DjNqvhoHgKhLgMqGJQH+232k7A3FmH2tJSvLtSOyAQ4jKgikFlPPv5PM8Bjl23vkNlnoIqKgOqGFTjfD5P0+SzRxytmRvwiKeG9uVyMVaxARIIcRlQxaACe7t3sBb4eDwwocABhLgMqGJQGs/gM3l9sFDO8+xzL7RmCwhxGVDFoBzki/BX1dvtFm+u+niW6UFwUNhAiMuAKgYl8IyLMEgiAVkHA4cHQlwGVDHICxmbezWOdoIIW2XYwF9HMMvDBkJcBlQxyMhedzCT0DjdlRRExwBCXAZUMcgCLVEWZmBO05RwqsWuPDwej9PplOrRAwAhLgOqGCRGf9zTPuz2tPmpm4GuQW2UAVUMkkHTLmK8CjmW+g2QEtpFFEEUC4S4FKhikIYYK1gmkiQzkmApQRDFAiEuBaoYJCCJCmcSPloJPuBGCNACIS4FqhiEc7vd6Cv+9fU1MqlUwWqrhPkZghe4GAkIcRlQxSCQJFZw8qTSpo9ZHhDiMqCKwW44NC3JcFaBaRQxQn/wWR4Q4jIMUsX/+9//amfhKKS1XsusfBaZ5yMvzwYhLgOqGPiSyh0sEyzz4R88Xse3H9ZBASEuA6oYPIcsyrRW4TzPl8slYYJuItXksHp02IIXpsUq/umnn2pnAfwMGcL3+z1tsoVnTMT/kOQeUWwTCHEZmqviH3/8sXYWwBeoE+aIKis/ApbEos8aY9cmEOIyoIrBOpGTld0pVxn7SvLQo6kShLgMqGLwAa11jgUfiCQ7bgST5HflaLM8IMRlQBWDnyF3cL7063bpVE+/3+8lhxnrAiEuA6oYLEtOdzCRcMeNYBIKynFmeUCIy4AqPjrU03LHybYQh5tWUA4yywNCXAZU8XG53W7kDs4dRpZ2x42YbKRN8Hq9pk2wQSDEZUAVH5RiUbHt9OTkBmw7RcvHEcrYAqjiI0IqXGY+RTvdOIemDO+ggBCXAVV8INgXUUw7sg4A7iWTprTg/s4HhLgMqOKjMM+zUmqe52JPbFChcmjK2FI1dunaAVU8PmQFT9N0u92KPbR6sNoqmRwypFYlq7cYEOIyoIpHhpZ/LLy8ztLw+jhZc9XgF0A8EOIyoIrHpLw7mGl5skPWsbViyyuXBEJcBlTxgJA7OPnClT40HkWQO3uNFz8ACHEZUMWjQT2n1vJmjXfaeZ5z18xgRnH773QMUMXjQAuD1RKCXvYTKjCZu4t68ARCXAZUcSyqf1LVQ+EhwTBSldf9iJJfJJVbTwoG8+cEACGOpfc2lCT/LSwl4YkqYt+dTqdiP0tlSpSV3jtRPN2/wur03obi89+XRVPMb1BMHyHEA9D9K6xO720oJv91d9wIo5gQF5vlwUL8+vrq9lBfLpeELuxpmlItkN9XE8oBhDgWakPzPDtmD9/v93me+Vv18Xh4xpbJu5LzeDwiowh6tMUK9/kCus9vgTZYURsT2aVPNtVzUyUFIe6vI7UGtSFqlKu9joIZZKv1bMEUDpyvJ1O/DUu/hR03wigcBlAgiMIW4tUCJhdi2t4wVVJJ0ukXCHEsUohXmzj1/MGEuN8IrfLxWLm9Nz5CLBuhfXaeZ/cnmv83HH1mbZ3d+sKDEEOIY3kqxNfrNcwSaVmIe3RKMOUzn/WJq0JsPJGE+H6/G6fUR6SG0pHL5bKV5tYROyle84QxlBdC3HF3agRDiG1dU0qxFvMtRst7e3vTWk/TpLXm730WYjpFfxiJPx4PPksXGKND9KzV21mI9U6UUrSgRKeQEJTkdDpdLpdMiRtCfDqdbImkg8tH9Tyfz/JV0jXcgKVu0rgc/c0NTCbFvwHUnOhvbsmcstaaHmr/Tpj96mBAiGPRH4XYaGEkpsvHVmtcpizkvVtnt+6VFxjmDMHfhizEq4mAjpAvlHVQqpt6f+/yevm3fcRIXKa/dbHsFHxk6ynSRwEhhhDHoj8O1qmPRrFSiiY7bLVatmKoXUprgoV4miY6a1gTZGiw3UHBZEbK0hCmIzz5IsA1oVracSMYVSnkLtMsD1uIqRWdTid5nC+W+mjkhz7dqElw2+Oz+uMyJpwUeR6MhqTFt52s7be3N8qP9F1AiCHEsUghloYAwQ13S4j5Rpkg9RAWYuMU9x/ZweQTqYnblsiy9hvgL8T9DtAZ1BJiEqzkydpCvFhtzFbP1eZhX2C3TP+k7GQlEGIJhDgWo93L5qtFSP+qEHNk22rKJMRs18h7jc86rfX1emXnII1N09/TR4KF+HK5DGALE+RYr/JocpKmTXNViA3r2FM9udks6YSYrQd2RsMitoEQx+IQ4lXxlX/bFrRkNWpCCrH+GJMkbQ17nFpCSfkLsbun9UhF6z75o1eFeHl/a+RtkBfLhmq4Jrj9LHuEmAdC7KSWtcYjn8Ipx9TAAAzVu6rg0NzcQszCKruTcromJJ5CrEdcCLFiiZI7KNxCbDQD/q8dyrastVIfIV621dZxCkIsGa2DlWdLiLcsEfk3263yq5+7k6cQ22elEBsmj5zo5SPEOT6lW6DuT4tOugzFlhCv/szLI6vha/y6dwkxu8XsSDg6zlGSfKUxDJikKvoFQhyLLcSLaHzGka2/VyV7rxAbLmAe6+M5UXt9xEPawkQLA4+p6nZLiJdnAWqLaH5b7dBTiH2SkseNCyDEY3azkqwKMf3sb3WJLQFl9PtCQm4h5mg2xpBa+wIlDDG3EPey40YYWuvqy9hTIFd8Ouqj1D4tl3EBTSaS0WbudNzprybFx7lHGIlAiCHEsXCXfjoZn51i7sWxjOPuds+ePr5xNRt0wfV6tU9taYHqZMeNMBox9lWKQLoWChIJhLj7V1id3tvQqgkzpF9Y0ogQLymqupGCxNB7J4qn+1dYnd7bkIyBo3W+k5hpjdOOEMcHUTRSkBiGb29P6f4VVqf3NrQa7TSwU4LINMktjMhfvnYKEkzvnSie7l9hdXRqzuezvSIaDbslfxbBZeFH2+tUjEdT+kUxZLtuoXf38vISua7b6XSy21tyeBh59WyBDaUap6G2CIgtgSggHMbAnTE9L/fTC9OUB4aq2rGkukQuyxf/6GJvVs6fBgaolOZwCHG+1R4olGrVI0ErM+j3UHz6O1M2StKUEBPuV/z6+qrfI3lfX18LPDEHtL7KVmM7LBDi5nDEk+UTDn87RUY9996XWhPiZeNFcIV77lfkyTRNnjZ4crRzcv8BQUW0hdsta6zElgRaxXivk+52u+l3zzXluTtRrrgGmwM5y0NrfblcXl5ecnyF6AYmr9NnFnzEC4S4Ndxmbw4LIkmaxoy+Xmhz6mABv3xTQSP2utsH5NCFb42n3YNGnxM+Ma2LkCbLvry89OJKbq3zc3QBha/ke9D5fG7tC4Ys9PbbTCbaaogHRz+bZfD0gl3ktgfbD7doJ2/8SUH6SD/JmbSywVFKhkPcamekNK00RLB46GzCL8r7/V7mwzzTQFMSWnBNbHl11M7tBD1pyimxReO/3zk4Vmkbx2fIK0n/XN3sLivkqeCRvUZ2Xao4xsheCEcecnyqN+iUsKFx1EN5Kgr1RtU/ZWop4WVbpPVvhEFVWt0grVIVuwY2VVIHhertq58qqlaMXUkKtcJf//rXP/30k//1uy4uQJnm6xmdpiJG2FoIWiLI6rlcLup9ZK+8mVxSiLWYvO5/1+PxSPW+5OYsHXG73aZpGt46LtQKf//735d5kCShmpdpBJ5PCbZrWrCFt+Avj5JiUaZCIj+qkmSy5VfvCdXhqHJczhzYe8vXX3/91VdfeV48TRMt4ZiJb775Jl/ixK5GFjCzo4sdN9iVTHH+uW3kfCNXNOFlmqYkExbImA32USQ0q+tCbTjmi7BZGhXi77//fpcRkduN++nTp3yJE0qp3/zmN/4XB6Tf/iiNQaRbvyniqyLYGFQdvno3Saq0KSDEXpQR4s+fP3tevNe2bd8WdqAaGNaLJMfedJ4M4JRYZTAt7k+IV3/b5cU5fvxzC/Ff/vKXXa1qV+9qZ4AuGAjx8r4qyK7mPYxTYpXb7caDvbXzEks3QqzFjj62icQHVy+gI3KfTaXUP/7xD//85BbiT58+7RJif+fmGIYDhDgsqfGcEquUj4tPTkNCLIMcDCFmFb5er1qs9s/Xs7zqj3sBGGdp5IR+RXe9udxC/NVXX/3tb3/bdYvyGLLIvWRBMTxLMU1Tjvl70zRFjg4lfAv+gVzDh3xJeAJIpwu5NSTEEkOIbd3kWUnyAv6vsRcAC/HW7U/JLcRhv+dP8z+GCi/eBclk/ttfYHtJvlTT02vmeR7m7e+i00/ADoSYp8bKC2idf47ismvfreP6facDz/zkFuJf/OIXAXe9vLxsnXLsuNEjdYV4mqbIHTHSauLj8XDHLw7wqR4DLQHYxfp/TCtC/Pe//13+99///rchxHYKbqntSIj/+9//hqXv6GyD9cO6QhxPcuPUMVo7XpiEGgVXGctUpVvyfvjhhz//+c+fPn367rvvlmX5/PkzD6wtG6K56nyQF7jPNiXESqmw9PXa8sRhO240ThIhtuf42v/lPnO9XtkvbPiIaZoGXebpPs7hJaChDvujZzyPhFvCuqAPIf7222+//vprpdT333+/LMu//vUvLba0WnVN0MHr9Ur/7V2IqeB7WbV9Bmi1NkmEeLWRGGdXTRjZ/Hik19PS2ZX/AOzwoY6+xz0ZoEn3IcTLsvzyl78kw/Dbb79dPorv6i7chpL2LsSp7h2yHy75hVh+gdkXSyE2LvPc5iefEMtHj+eUICILdb/ft9Zvm+e5zDhK60LMIWs0o+F0Ov3hD3/QYud2Oisj0mSAGn+A9yvEniaV43ZZS+N9lhK5hZhalO2poCPylF3JdYWYRq1zP6UuMR2EPHWr74gsvDKV1roQS5SFPCv9d27ZtY/EC3G+1eMihXieZypFsR03qlBFiOVlDm9yXSFe3iPVdrXnvojpIHIimGH8Qog3+etf/0o27+oACK1g6x+VwvW+9fXh/1WSqYn/6U9/Ukr985//jEmEZm3ENNb2KSPEW8NusrvyMB0dtOcWxeQ/GNqwNesjKhJTtPP5rJSit2a8BQhxf2TK/+9+97v4/jO8Ci+VLGK+Xm37iJ8+dFf+g4FF7LiXX6KRzqoQy68cWZ/G7Wxoe9Y5hDgNmfK/Gn+2NwWlVNa1mFsgoRDzHGh58evrqxLzg5aP0sx/0JieTPN6vdYVYo5WfDrLo1+ChVi+GvpbfgQbQszxMHIUinuW8emzamJ75mT9gh3FigBCvEoSFR51rFyyS4ht6CyLpn1q614+ZVjE7fiIZcqjtoSwQtnRVsZ/pRDLeFnG+JXlzw7Pl24UAUKcgEz5j+w2Uh0S5KZhkgixoZ4Ueea4XVavjJowUm5HiJdB4xfDmrfxEpf9Qmwc1B8XgAzIjOuCXckFowXffPPNp49QyFoByHMfdm+OanEsFvGUSczpCmgZfREjZMZ6bO4gv+mdp/nZlaUcQqy1VmtTKMcLnokRYlqSjeCBVrpACjH/vk4C4/pF2Mh7K7kVIW4HqpEWVsPhyLMA7HYAIW6Z5Pl3LEith3NQBBRHf7ReDaj7rwrxKkZm1P7PDgjxOi0s1RrwOgm9tuNGcGrNwtGKe83PBkmef/e+G4MF0gSUhY1Z47tW2rOrQuxIU84N2TsuCiHepLpyxXxw2cdj7OvWsI0RCLHEp+nO8zxMLE1AT9nqJrJdrfqI5beyoc48WOc5r90nPz9f4J/WeJCpVWWhMvp13XuXe8eNTncnk5avenfqGXMrwtz6/timkz/Svei4LFV1UaSdj2+thc++JOztKeTJ3eopLLhG+BodZ5/yJJZVWKxIc9t9/LQIEOInVPmI00GOPLdh1Z3ZqD868io67uPbABVha3GZhOw1xAbQ4r1vx616sr2ptbAK+4NMWzEVHBvnWb0Q4ufcbrcpelOyveztHj47bmitG/8avd1uZG7I8JXamVqWRD/GVDraFzE+NRvq/Hv3Cunu59mmsKmU/CNmgRD7E2aiBhPwI//0msJF2IUclS5gNu4lbb3tdSB6EvZ+W24VnvSe/wVCvItM/WfrWbsu9v8CCs1RFnhYo7WMGSTPns8o/F6CU+vdQdF44/EBQrwPctIXaLX+4S+7hlyqdzkeeVNi3KNifjzJ0dWpKmgXy8gB4TCnhKRrBwWE+KAUkDN/C3dvTmoJnz3E0RFZ8xwQ7WQQX6tdOyj6zTkDIQ7kfD5nXQzeRy5V0GKpZVqtEXNGnxGRe85XpECl8Tje3uCQVFFoemNKdPs4ggJtZINsDUcZIcTr/Oc//1my9U+fZKdpChvUyv0RKofduv7glZQcG1BiKc6n3O/3tJEww7yyLTo1n7vMdDFoB420G9bJTca2iJnUq6PXODZ4fX2l33PeSFDvN+sap2TvpXBJn68iXms44dMHmC++BfWsHk3+BULsScKOqp95655eEJm+P9Lt62/E9UgVM2pybpS35Pwge/ob0CNd/8BAiL349OlTql6htXb7HOIfpOJmqfUSc5aQWiWlLT9Wn57cKSHpWrNsEhofteg798X44Ycf9NqaZwE4Ekn1KRoWa2GMckTmoS8qdmMa9jRC/XI4JSTDOCgej8c0TZ2usiKBEO+AwjkjRcrR5xP2DZ+keL78SMNuYTRiTymxS16BZw3wc9vIi4tnkGKUJDKcaFXy6Ic94XoXWw2UzC4WXx0912AM2unP9HZOp1OB4dAyT8lEqi/URmil/XVHWNfdMkOSG6SGe5F3qB3DDkpOa0JM/+b+TOnXtUrtuXYuUjJUYWIwttH77W9/647NDtv+Tn3cREse35uUjbRteW1f6fbt1/zJTTu9WoovN4x8j9O92ZVV1kosQCvtrzppg4WrQD1WxpzVzlE3NFJXq7LLXzOZHho8dagKjbyp5DRdqs+fPxd71gBCTDNo2fJVSo1nOGSihe7t8EXIyIocPv0uRmsvl0ut/XQKUL/9Ofjxxx+LPWsAITaMKbiD/akuxP5m6TFneVR/QbkZvHj+/OpXv9p1/f1+n7fJlEk3dkdq38xphOr93D8DOts4XrOtpfEfiSRAiL/wxz/+cdf1ykmmTLqxG2t1femFuhUV4EQiOb5cLgk/1adpam2rLV1qffDqoKN+Ye/LJsGFRTwGFYU4cqws7Q9/U7an7ja6LoCjlPMpYUKc5NG0s3d8OnYRDtWUY6j4ERMfPaa1Pp1OqQayWpjlMczEZX/QS7+QXIjpAqNNGwfl2r7xWmAXgSYxRyZ7BGrVUsLnxu8DwlRvM9UzUJ7DFXiL5ELMKzmsHqFVXZRS1+tVvy+4E/lhuHpvF5FJ1anS83PYnvp9H5DIRGpZo7rbbUQigRB/IUyI3SN1hv1L/yVZXF0aPNKiWS0CGUrBaR6E8lWU1RsrW1oYVX68qVOUf24LHLTYNjmE+Hq9yv4mbd5VxwVdn7wI9oOAQRUhLvCI4Fdf3ql18E83CPEXwoR4dc0Hbvq0dws1L/qbP7vYZpHwXkRpi5DV+BqDkqJDXqkyP43kZAgbxyvpJUi1QWq/QIi/kClqgi/T74tPyuOrJBfiBXFszygpxFW+voO9Xrlzm2SN7wGAEH8hkxCz24usXfftt9stxlByFOGwrjdPitVPrZXDaLUKignb1dTf3t7y/Yp3t/ZbPtA/v5AvjtjHfSyvhEVcnjJC3EJYtx3M85RMFmuwkT4kqIgvJPQRG0tkkS1stDl2GfMtT/f0jSlCCxLQMgUq5/F4tGP98eiF5xfY+XxO6NQ+zsRlf9A5v5AwasKwIAzvMCO3jCOu12umImBmh5sClaPai13R7wtWPL0yYfuBTbAKauQLaX+fZZdzdz+2iOMf6k5EYXnibXJLQ8tRAfp9OTd3gEQSf+7RJi77AyH+QrP9xB93EeZ5HqCMmcgqxPM8V/TR8wdZ19SqvWKMX0JPBhCpp0XAkN0WWbu6quqUGKBhQ4gPxADt9WkRjtCgw8hXM9WdEgM07CO02/FL6EnN765EPO1yA/TJTKg8Xb2uU4J4+tIfj0cjC2pvkentNMX4JWwcGo8uM5EUA9Zb5KiWRpaw8fl53vpp958bTbvcZypvC9WYm/FL2AXFmtoR2nQAyaulnd88fyGWFjGvy+pp0W/FaCahkZrMyvgl7AJaCKbAg3w8GAckeeVX90gw/kLseXxXIkuKDWggxKAcZfyJCGJbJW1Xb+rXLliIF2sWsuHE4JQNhwZf79iAxrjlaQj802L2zvgl7IgyDa4dY60dEtZ8O04JIpUQ3+9304Ws1P1+XzaE2L5YPgJCbDB+CTuCHBS5B+5Op1PW9HskYVdv7XcuTIh5LRRqLfRfuQmT1poWUaHmaiRCtrBcoWJrGViaVur2XUCIQQVy92StdWvxSdVJ1dWfGnfliYma4OLQNUZS8uCqzjo2oFm9YAsIMahA1hVgl/a+nVsgSYXQNivx6aQlTIhpHgrfSxbu6XTa2lBmVYgdG9DYNriDIzTX8UvYI7kNqyO07F2kEuL4RJIT4yNmjGG3LZPZ9jxsXQ8hNhi/hJ2SdWrsrm5wBCJrQze8CXxCIX664LUhxMY1cgMaCLHB+CXsF6VUPmfuERq3PzG10fhaz0mEeHXlYqnORiJPN6CBEBuMX8J+mec5XxPM7f3oi5h6btMjwSQRYt7EgOLVCIdrYjXNpybzFhBiUJkkq3Gvgr1qJMFdPd8LSkUSIV42xvQ4cQ53U++xEGQUS2TcJITYYPwS9k6+IIfGTbmShNVw404JIvnPLQurcZxnfEh/muPiXU8Mzm0vjF/CAci0BztmdjBhXb1xW5gY4LsHQgxaIUdbxMwOJqB6e3Gyd5FJNxBi0Ao5Zj9jZgeztx5eX1+7cOy078L24QitdPwSjkTyFnmEJu7D3npovN7kEFkXPxhuGq/tJIxfwpFIPvu5l+/r3Ph39ZI7quxCa81L7ciVdG63m84PPzQTtWs3OxDiztgV9+PDABZTPP5V2lp1aRFVVjcbFZ8+ABDi/khrxh7hu+8pPca0Sv9D5BYY8UCII2mlVYFdyJVeI3l5eUmSTtf4yGt1pwQ5Gcj/QPNx2pG/dnLSKRDiLkk4lQBdaPET4oq2cFPG7ypoRZFAiHtFJ4pMosmp8el0zdMayLoYno00fo2lgduk8ey1z9F7YNfoRIHAzdpZxXBX4/1+NxYey4dc+bejlwIhjgRC3DdJZj8jiM0hxLk3EpTGr3rfwy3Ts/LRY56bAkLcPUkCqlqLyiqMQ4jz+W06NX5XgRBHAiHuniQOioO7ibeKn8MpwWv7Vg/+TQiEOJJB2sHB0dFb9TS+Elu2GVtfYJ+AfTzhnLE2I8+SMFhxygMhHocY94JuewGg3vt549UbT+8vqDojN46jEbOde+NBbL33897z/5ThC5ibdvseCCAm/qHlIaPe+3nv+X/K8AXMDYR4NIJnP7e8i51nxmiZ4Ov1mjs/e9cjbrZiUzF8AXMDIR6NmNnPxaYt7MWzn3NAWO780IP8f/CG16nhC5gbCPGA6P6e3T4AAAc5SURBVNDZz826iSHEjTN8AXPTaMcDkYQN0zc7rSNSiOd5du/O5zj7eDxswZVC7LMh8fA6NXwBcwMhHpYAIW42yipYiJWFcYs8ZfwOyZlvxo0cEew5NWN4nRq+gLlpsdeBVOy1cGldhTx5iSJMiE+nk1LqdDrRBIrz+Uz/5evp4uv1qt/3ueAau16vfIT/5mFAfhCNcNLfjkkxw+vU8AXMTYu9DqQiwMJtc95tmBDbZfE5a4vyInYkkg+SuXLbxcPr1PAFzE1zXQ6kRe+c/UwSkzVLAYQJsVyX7vF4GGKqlDKGNGkhNF4LwnioPEgPMmoVQgyCaa7LgRzs8lGo9mZ2JPQR01n9vr6EnQgLsXHcFuLVC2Ly3y/DFzA3EOJDsGv2c4MzO7byo7WWZu+Wj5jX2TGEeKtO6DJjoWcIsYPhC5gbCPFR2DIAV2ltZofDdJViajhqHVpp37sIM9nTNWF8N0CIQTAQ4gPh7/xtzU281c9XHRGrp3wu4CE4OmXItC3EMlf3+x1CDIJpq7+BrLy9vXk6KJJsS5qQrX4uV/jdchDzcsDkqVAfIx/4gtWIC/Zp0L1ce8a9l8vFocKO/A/D8AXMDYT4WDgco5LWZnY4+rn6iDzF8b+sqvQHuxSMGRnG7Y5TdKORvjv/dI17gl+/QIgjaaizgTL47Azf2swOd4bZ5t11KsntPunLy/T7vBJpbrcWoxIAhDiShjobKIaPyKqWtnZuJydhuH3ckk5FufcXVB0I8UGZpun19dV9QTu9q52chOHzCcImMyny5XKh/7pfUyP0/oKqAyE+Lk/t4nYWY+u9n4fln0XZxw3twLa7u6P3BvAUCPFxIUewY/azasZNLH2ssnN2REzxaX428fLyosRKRj4pt/Meg4mswPbp/g2BSBxmr9baZ7HdYuiPi0UcnHmeDbPRMVGwbNbSAyEGg+MW4nb6MCTYwdM4PPlfnnuy+uofj0faX98kCUKIweA4HBRvb291tY+GsKZp8gm5AwS7LGgSCkXL8Sme1cIYyygn/8FLkuDwbx9CDJZl++u14jjJqnEHAqA6XLWXt46kfTqE+Clo5WBZ3mc/20GsFERVPicvLy/D971iKLGAhrGk3PK+Rh27KaRuru7Xx7hDnvnsqhC7U7YTH74xQIjBF7achiVtUpjAOVBierd91hgJYPfxlsfZ9kdL0TROLWvvVF5gNzk7hQVCDA7Fqis29wJA5AhW71N+sz7rmKzq6dOLydFMLmZuA6zCtNEf/5fHGKSGkvfZ0FPWX601L9ZBtxtn6dGk1MM3DAgx+IDdY7XWmZaq4b0wRl0KpxEChFgKn7zXTsdYEXTv7VpslUJJcWOQW6VAiMHhUB8/NvMFsfmrA4ghQIgdR7ZW0396u17bFUWu0G/7T1iUIcSgG+R6BTFwuJj8OE2SMkP9TT6FqV2LA5JWiLmZSWex9hZi2rlKwhdQuKRMk5MdvmFAiMdhgMYKAzkHT4VYWYN19u30tz2db68Qb2HnlqBduwZo227Q7sdhgMYKIc6BckZNrG5NYtwuz9IyF3xWx7km6LgdyqY/7pkyQNt2g3Y/Dp6NdZ7nZhe9hRDnQIkwsuv1ap/1FOJVJV0drFu9XQ6+MVqsH+J+dFDRuwHtfhw8G+uWZdQCzWasa6hWpUvX2OXP3gnbuN2QaXboc/yZjxAvYvMqToGmk9A0E5kfzh7FwEGIQTdAiMEqatsDa1u4biVdXfJNbUzMWz1ibPSnPgYv2tmj4xBi0A3lhXjXLFUfIMQ5sGuVrFF7urMPb29v9u17Z0K7g2Ts9CHEoBsSCrE0SWSytIKicYFxr3tJxqfP9b8YeDJArUKIQTckEWJerFbC68luRS/Z6Ydp8QCS0SAD1CqEGHRDvBBzRD27/Hg4hRJnIaYdLWktYz5L/5Xr2+qde2oMIBkNMkCtQohBN8QL8apuyoMsxEZqcqzGyAZ5Kjz9xQNIRoMMUKsQYtAN8UIs44cY3tNheRdie5xdHuHBHDk+DiGuiD2PvDscW9yOAdr9OOh0Qrzl5yUhthM0opdsIMQAOEC7H4eEQrx1r1uItdbqfSkfPksGNYQYAAdo9+MQL8T63R0sdVOqs48QG9mARQzAU9DuxyFeiHk1ALkigb9rQltrEch7PfPmeSUAI4F2Pw67hNiGZprqtbUKOWW3EHM0m0RGv/nkzb+8AAwD2v04eIqdJw5jVvoZbJ8DB0uQWb1rojOEGBwTtPtxSCvEVYAQg2OCdj8OEGIAOgXtfhwgxAB0Ctr9OECIAegUtPtxWA146I7atQhABdDuAQCgMhBiAACoDIQYAAAqAyEGAIDKQIgBAKAyEGIAAKgMhBgAACoDIQYAgMpAiAEAoDIQYgAAqAyEGAAAKgMhBgCAykCIAQCgMhBiAACoDIQYAAAqAyEGAIDKQIgBAKAyEGIAAKgMhBgAACoDIQYAgMpAiAEAoDIQYgAAqMz/Ab2j4u/nFa6KAAAAAElFTkSuQmCC" alt="" />
(第12题图)
第一题,水过,小学生都会。D
第二题,当时我们场好多人错了。。坑点如下:
1.和pj组的不同,是来回按键。
2.让你求第81个字符,而不是第81个按键。
所以我们可以得出输出的是是个字符一循环:ASDSAasdsa
所以第81个是A,选A
第三题,异或运算就是不同得1,相同得0,列竖式算一下不得了。
我们考场某人竟然不知道异或是什么。选B
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAACHklEQVR4nO2aW5KCMBAAcx/P4304j+fxPuwHuyxoHtMahF26v6xxmEy6og6UaZQwae8G/hLKAigLoCyAsgDKAigLoCyAsgDKAnSTlVJKKVOtFJ/eej+f1qnUb9JH1rz8Qx+VeLbpF/JpnWw8SAdZcUHBC4P5tE6zfhNlAZQFUBZAWQBlAZQF2GfOKgVpPq2z/5w1L1/aYWWYfH4X5dM6lXiEbrLOgLIAygIoC6AsgLIAygIoC6AsQEPW7bqeka+3YqHyZEwn6V3yIxQvuw+XlNJluE+v5xdzMLt89p4D3bvtkh8kf9l9uCxP0SxrHMfptC19PTdUav2Y+XGyl92u69OzljW5/FV5tM1/VNZaxXfk4aO31Hm0zX9U1uO5yslaCj3a5j8pa/oSD/Dj72ib92RtmB/H7yxAh1/D5fLZPirtHiQ/SIc5a+4g2/SSI+dH6DPBn4SG3fi94Rl48dN7TpQFUBZAWQBlAZQFUBZAWQBlAZQFUBZAWYD8457so4z/Gn9LlpRQFkBZAGUBlAVQFkBZAGUBlAVQFkBZAGUBlAVQFqCbrMpDj03jpXVf6KdJH1mp8H+o0pOjjvHSuqifIB1klRqtRLrE44KC9ZsoC6AsgLIAygIoC6AswLZzViXYJU7nrHr9JttO8GlN93hpXdpPdI/0gjOjLICyAMoCKAugLICyAMoCKAugLICyAMoCKAugLICyAMoCKAugLMAX4AjdNm/3o6YAAAAASUVORK5CYII=" alt="" />
第四题,我记得去年考的是16进制小数是0.8,今年成了8进制了。
想一想就明白了。选B。
第五题,可以想成N个人打乒乓球,决出冠军,最少打N-1场。选B。
第六题,得仔细说说啊。后缀表达式又叫做逆波兰表达式,就是按照从前到后的顺序把操作数和运算符压进一个栈,如果压进了一个运算符,就把栈顶的两个操作数弹出,并与该运算符进行运算,把运算结果放入栈。这题按照计算顺序,应该是先算a*(b+c),然后是分别算a和b+c并把乘号压进栈,b+c的逆波兰式是bc+,所以应该是abc+*,然后把d压进去,再压进去减号,表达式就变成了abc+*d-。答案为B。
第七题,答案是sum(每一个节点孩子为空的数目)。根节点的左孩子是叶子节点,答案+=2。根节点右孩子的左孩子也是空节点,答案+=2。根节点右孩子的右孩子左孩子为空,答案+=1,其右孩子是空节点,答案+=2.所以答案是7。(我是智障,一张图解决一段话不得了)
下面这张图中,黑色部分表示原二叉树,红线表示指向NULL指针,红圈表示NULL,所以一共有7个。选B。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAADBklEQVR4nO2aXXLDIAyEfZA85v438xnoQzMexzaglVb8BO30KcFC+tpEi+iWQmJtvROYSQELUFNY27dabk1Ru4zvdKbj1SjdHJe5eLXItUxkIl4BC1DAAhSwAA0BaxZejWBVu+EUvNxTLOC4vDI+L9/87jjKDn5wXo7J6SofmZdXZpaah+Xlkpa92jF58XNi1TmgpSBnQy9vKF7MVJwKG4cXLQ/XkgbhRft+ocTpu0U9B0KIVmV05zVZj+/Ly7R3l9Q78prSZ283NdpXuq5Tfrlkqq+47CtaNNItVseLovoGQ91i9Z1QV6KPNj4PWIACFqCABShgYYpuiClnZTr/Zf1rf72vj3U/02Ycsu+kSLJof70vyd3xtVSvL4d63ByXXrwkLLxmttUVBSjteckpePCqRCzjaAwLrZ9/e1J+u4qjDS/1nIPLqxRLCMKbl7FgIi8rrKM5Og25KDFZiWX/y0VIan+9zz/qtB59E61I0tjyy85Bld/Xq3k9OnIiqeor0lDH81DlufUKXq7HKW7wz5EKrZwFy9WL04MHLCRgCljygClgyQMmbeWUbjgfrKStnOKz9oyhY3XDx/j6bniOi1Zu9Hv/ldwfzBFUxOf7rCMKxekKdSZy2ZoI6x5cHa3ndLhMxM6L+AH8PGtIxqQqCyOswuOcj2EzCUFYeM0KC/0+Oq/UFSbZQhHW/2LSPMxAC5P8PY4IC7VvdqMr/+TqTamH0IMB5QgVsKSw0IaA8vodWIrWuQqsuynX+QyI15SwHlfqMoSOQfN1Q3vHPOJUX7kugDZQiOuzKB0zaS8yOjh4y3oKrOpvK/uWJPo4CliAAhaggIXJ3g0XgpU8JxP9u6GH0A571q69JZkVllq74ZZkLVhVHOUFC8GSnB8D1kcBSyr5WKKwcglY0ABnaVjoqGshWKgbeFTWstpyG0tqZy9E/Duw1GdGOeIfgaWeRkCIl4aFPhWwAlbAKihgYVJ0w3VhJZXPWrEbHlJMUJfzWUYJEQcsQAELUMACFLAABSxAAQtQwAL0BxKeBWhBqGryAAAAAElFTkSuQmCC" alt="" />
第八题,我是这么想的,先构建一个8个顶点的最稠密无向连通图,可以根据公式((8-1)*8)/2知道这张图有28条边。再添加一个孤立的节点使得这张图成为非连通图,所以选B。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAAEsElEQVR4nO2Y0bLjMAhD8/8/7X3YnUxqQEgOcdod9HQb24CPhZveY7RoHW8X8EtqWIIalqCGJahhCSqGdVz0/WHlMipjfe6kamMPhV2ppCyQt4f7G3so7Joeh3VzY3b5i824AxbWctiauhXtc1ZEZwHo3yf7ee244O1zyRrnZMtoM69iZ012mGxllzBtmLpsG7KCNLZcC+t8Hi2P3Gd9FAW5sQNW9V/t1lN4/nVoAkT29XW5Vr2o4u/1kcECq65+jOwGIqRD97UeGrcDvoanuyy6idw2BNnToZtaiQsMz8NKg1igJCxc4R3JEckjdTso3TO4sIZBkOIo56WFS88zmnnfjMMQZ1jUWkwIxJManpWwJaO7HKfgkaVzGFFRmJomX7hLgLkWYI3PI0nLkyzpB8ln0EeX+gg/TD3ILMfnAS5ERklo/l5grGGfu2ZZgwXqcf9e4EVdDeHiGCiz4WihBMt9fhjx0YDY12u3FH6JHcI7JzsuEqiWqTCsnAlxbmC53cjRKRHDgky3FZYKBTuLZGE/gpgg1/h0JQ4FtNKGZIkYB59o2mekw1jeYgLeZJT7yEYvYWEnpMZhYFkitngQBGvFGkxWhoW0jdQRbm3SkaRi34as13hYYDKJHsSZ7GxLBYWpEl4dbRHWbjYCyZSENS1JDxVkXJDwmnetBp/w8PiGFYgzR2yx4Z1oFGRBwpcxbxamT6f5/EwXrsvoW2CRdxZJjZngNp27HFt1E6xBvyVGt0nUPmADtrWZtSDma7DcaekdxNxu2ErTR+kA3oQ1gsNnaprsdu3ctKqUIxNElQwLDDEdGmWJmlQqICoGzJRU9m3oNlee3pgLU2MopDVshWVH7RDfhiCOPQDGeu/DkoyWnj+wD7ategZ8CkZ3YUn9Mj2UYF0j4D5Ny6uHZRPbUeb6mP6wwUFeu9DtU7DWTbQbVnoxXRktHK+0z+NTdkhKjapCY0TFZBsyDQiWkwtdZJKpk6pwbhs6PSjGTc/BsmW4+HD2MD6olTwTt+OA43C5Z5CbsGzMaFO8hFdhsuPw5Gi+u4oPa3FESssDEm7QqD53IYblzr8jNyOesMCLhWWLKNyqDQhSp9NsQDfFg7CYfU71+fnE130+LIAuVYgqAZUNgykPJ/7OOIJX1mgVKA8sfwqWW9CgqUmw+L6YwgJHp/WcEaIlQCuuHpAdqCY9WNxHUUmgSGlTqYSKURTDDm8Jx482GS3kH97UyttQEjEw3dUdUhBc0jZSA8A6s65RO5eAhk0zuhaLEqUP74sNqiKL9umyAzRtHPARPCzR4t1Ezrx+BNFw2AnrNGQnp7Uta/V7IdvbZCV3Qrp2GrLRGKMV6lZ0uzG3+qkB1eATd95l5apJ4IJYY5SmcN23gdSogvUvVtw+hSnsxz2kRjks8uF3xs8LqIy19B8Lvkld2/4qrHHj0l1m+sOwRsXvVRCZfPiQ9mUq0bJza7LvTFai55ybp96c76fVsAQ1LEENS1DDEtSwBDUsQQ1LUMMS1LAENSxBDUvQ+7Be/GGs6uX63v2Xi6o3i3v9n3mqGpaghiWoYQnqC17Q+8X1q8P/qYYlqGEJaliCGpaghiWoYQlqWIL+ABH4sueVhzqxAAAAAElFTkSuQmCC" alt="" />
第九题,常识性问题。我们说的"32位系统"理论上最多支持4GB内存就是说的这个。所以选B。
第十题。自己模拟去。用devc++或人脑均可。选D。
第十一题。枚举。注意重复情况,设三个盘子苹果量是a,b,c,在枚举时使a<=b<=c即可。下面是那八种情况。选B。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAACeklEQVR4nO2Z0XaEIAwF+f+ftm9bz+oikwTc1plXLwk7VUTaNhmm3T2Bv4SyAMoCKAugLICyAMoCKAugLICyAMoCKAvwK6u11hpwN55vB/A0DwVn5C/n2d7Kjdcdz79lMrKobpS/jLVj6HpM4sfnb6tAEWXV579LVompQJ3AmnUeONZ6sqz+kHWyqkwFSsVan78NlTU4SlkfY/fss2iyvFTlmvW6TDcBt2waLt9ZJfnzq3i+D0ZZAGUBlAVQFkBZAGUBlAVQFiC+g9/4sd/6Ixq0fb9sEf82RDMIfEvm+2bO3crOs2iy8BM601dZIIZG3SwrtnZk+gZG9ZeLRbL2ybyvQAV6M37LY7heVmCeD5UV22ecLhr/XFa4V+U+i4ZvWbMyf6SerA3usDv36uWQwRb5vv1nKtDCb0OAsgDKAigLoCyAsgDKAigLoCxAwQ4ehfOb+G3mGXw/H/k2pN9ceTv7UuiXo2lc5iOnDjfKQgWVFS9IR9XIopMoXK0GO+aHfFyzMrLoGlfii86wKr/ipLRkVLLCzXdW+DffIiswqmzNyjyqy2RNeRvuL8zeZ61cs2bJ2shC2A6MDxmpP94a5Wn9k6t4vg9GWQBlAZQFUBZAWQBlAZQFUBZgxRn820CUT/adsoOf+m34NpXBcL7vlG/D2ZPYJx8nq9+jH/tmWf3h25pj5X0sf/BAW8fyH9esmCz6QkDFxwuW5zu/6///wyLWtPjOGs+3M1CLqdMbH7j0bUjD+eGZuZ3L2l+Yus+i4WTfKVuH1zW6CoaHxJTRZznw7PfDfhsClAVQFkBZAGUBlAVQFkBZAGUBlAVQFkBZAGUBlAVQFkBZgB+NVrVVYHq5LAAAAABJRU5ErkJggg==" alt="" />
第十二题。只要找到所有是Lucia的朋友而不是Jacob的朋友就行了(Jacob本人除外)。选A。
第十三题,自己想即可。很简单。选C。
第十四题,我不会233333333333,选C。
第十五题,Search函数的第二行判断的是当前元素是否为峰顶,所以第三行是c.return L[k]。第四行判断的是当前元素从左到右是否呈上升趋势,据题意可知,如果呈上升趋势峰顶应该在右边,所以是a.search(k+1,n)。第六行就是b了。所以选A。
不定项
第一题。常识问题。最重要的是我尽然选错了,把D也选上了。以太网不是无线的。。。答案是ABC
第二题。同理也是常识问题。光驱是连接光盘的,鼠标是连接手的,显卡是连接显示屏的。答案是A
第三题。看过书的都知道。(计数排序比较少见,可能有人也选了)答案是AB
第四题。自己想就行了。我这里没有图。答案是A
第五题。有人竟然选C,不带衣服进考场。。。此人一定是受到pj组单选第20题的迷惑了。答案是ABD
问题求解
第一题。我这个约瑟夫竟然画了个树状图,画到第6层发现可以直接求结果,然后算出来是55(竟然对了)。
正解是斐波那契数列,设f(1)=2,f(2)=3,求f(8)。f(1)=2,f(2)=3,f(3)=5,f(4)=8,f(5)=13,f(6)=21,f(7)=34,f(8)=55。
第二题。答案是3,,通用技术、化学、政治一起考,物理、历史一起考,生物、地理一起考。
阅读程序写结果
我把代码弄过来了。。。若君问吾代码从何来?吾曰:"手打。"
第一题。
输出:6,5,4,3,2,1,
#include <iostream>
using namespace std; int main() {
int a[6] = {1, 2, 3, 4, 5, 6};
int pi = 0;
int pj = 5;
int t , i;
while (pi < pj) {
t = a[pi];
a[pi] = a[pj];
a[pj] = t;
pi++;
pj--;
}
for (i = 0; i < 6; i++)
cout << a[i] << ",";
cout << endl;
return 0;
}
考点:将数组倒序存储
坑点:最后一个逗号
第二题。
输入:3
AB:ACDEbFBkBD
AR:ACDBrT
SARS:Severe Atypical Respiratory Syndrome
输出:YES,NO,YES,
#include <iostream>
using namespace std; int main() {
char a[100][100], b[100][100];
string c[100];
string tmp;
int n, i = 0, j = 0, k = 0, total_len[100], length[100][3];
cin >> n;
getline(cin, tmp);
for(i = 0; i < n; i++) {
getline(cin, c[i]);
total_len[i] = c[i].size();
}
for(i = 0; i < n; i++) {
j = 0;
while (c[i][j] != ':') {
a[i][k] = c[i][j];
k = k + 1;
j++;
}
length[i][1] = k-1;
a[i][k] = 0;
k = 0;
for (j = j + 1; j < total_len[i]; j++) {
b[i][k] = c[i][j];
k = k + 1;
}
length[i][2] = k - 1;
b[i][k] = 0;
k = 0;
}
for(i = 0; i < n; i++) {
if(length[i][1] >= length[i][2])
cout << "NO,";
else {
k=0;
for (j = 0; j < length[i][j]; j++) {
if(a[i][k] == b[i][j])
k = k + 1;
if(k > length[i][1])
break;
}
if (j == length[i][2])
cout << "NO,";
else
cout << "YES,";
}
}
cout << endl;
return 0;
}
考点:匹配不连续的字串
坑点:同第一题
第三题。
输出:5
#include <iostream>
using namespace std; int lps(string seq, int i, int j) {
int len1, len2;
if (i == j)
return 1;
if (i > j)
return 0;
if (seq[i] == seq[j])
return lps(seq, i + 1, j - 1) + 2;
len1 = lps(seq, i, j - 1);
len2 = lps(seq, i + 1, j);
if (len1 > len2)
return len1;
return len2;
} int main() {
string seq = "acmerandacm";
int n = seq.size();
cout << lps(seq, 0, n - 1) << endl;
return 0;
}
考点:不知道 最长回文字串(模拟即可)
坑点:没什么
第四题。
输入:11
1 2
1 3
2 4
2 5
2 6
3 7
7 8
7 11
6 9
9 10
输出:2 5
#include <iostream>
#include <cstring>
using namespace std; int map[100][100];
int sum[100], weight[100];
int visit[100];
int n; void dfs(int node) {
visit[node] = 1;
sum[node] = 1;
int v, maxw = 0;
for (v = 1; v <= n; v++) {
if (!map[node][v] || visit[v])
continue;
dfs(v);
sum[node] += sum[v];
if (sum[v] > maxw)
maxw = sum[v];
}
if (n - sum[node] > maxw)
maxw = n - sum[node];
weight[node] = maxw;
} int main() {
memset(map, 0, sizeof(map));
memset(sum, 0, sizeof(sum));
memset(weight, 0, sizeof(weight));
memset(visit, 0, sizeof(visit));
cin >> n;
int i, x, y;
for (i = 1; i < n; i++) {
cin >> x >> y;
map[x][y] = 1;
map[y][x] = 1;
}
dfs(1);
int ans = n, ansN = 0;
for (i = 1; i <= n; i++)
if (weight[i] < ans) {
ans = weight[i];
ansN = i;
}
cout << ansN << " " << ans << endl;
return 0;
}
考点:深度优先遍历求树的重心
坑点:无
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAAgAElEQVR4nOzd308U9/4/8PkDuOFyL0xMNiRckBhDvNCYZrmAaEjEtCEGayZAahZim8VjukrjojmCRt7GFtIW7elEJf5YKxN6RI8rZbVCw6JMT5fAfumogLvAWPm9GcguzO68vxf7a/YXP3Rt+Zw+H1eVsjOz8/M57/fr/YahAAAAAJBRzF+9AQAAAAD/axCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgw/4WAUuV/xifX3mXz0tj0z511d8JKMrqv5D0AVkan/YF336r1rUKaX6Dm/U+NmOju+avEJDHx6T3ezjegqr4/Mp7W3hACWzeA6P4ff8HThsAgLQ2ScDyPb93425vv5BW711yurl38u0eNqosNFfUtPROKlSRp19LCdzCvXsDc4pKKVVnn/3QPjiXcGdXBKLfddz+JtX9PuibG3M+vHaGLam0Dr/pa/+h/6Vm0RPio/s9kj/VRgXkoasVhabWoYVUi1WXnPwNx1jipsa87Oa4h+7F2Ge93fVltdeds5qlyQIpyKmwjqwkrEH1C1dPttzkU/jhe8s/ztrH17+fVb/Pn/gFJu8d/6yRH5wP/VwRSMHhlv6Zd3paBl7art13hM6FZx0t59pccwvTcTtkrJ9raO6ffcu1qKPWspyc6rtS8udV+fVrOfJj33PbDw8coRO1t6Ol6bZrOuGMcvdfq21+6n2Xb7vkvH7x36IcoNQ/2nq4rFV8h5cDrcDUvVMVje1D8wFKKaWyQA6WtzydSzw7ZoTbt+3ibPw5MHnv+GfkwUtfZrYkHa/z+qV2cUGlVB1t/bDs+svEUzfhcAAAbF6bJGDJAjHoWHKH53n+O7MhnyU3eP4GYfM0P8zZxw2/RcBSFSVA1SXhws6szzrezAzd/qqBxLOw+bqajjehZS+JXHlhXaekqMr083C662s1bfmQ2PoEob+Xb2kO5Y+VV/bLjfWWf7CGHB1L2mzd/QNj7gfHsg1mLpZXvjMbtkUekH5Pz0PHyIQ2JD0hH+4mP4d/5O7jqo9x4bwlO5tK8tkvSDoWNp/JLT5xdzT8BAp67bVbEx9IskCKWd6TvE8UgehLOWdovU6ulDnEOcclSZIkgSv9oKbDs779vDLn/OFs8yMpsaVBFsjeA9YxNbYyAxHkDRyz1FtcZObu8DzPc2bDli+6xgfuXbfy/LX60vxiS2SXP3TNv82zV10SLuxkdhibbiUlzrZbpDwn53D0uAikyGD+LnJwdx/vEofu3bLybTfrD+iKLdfCn+pyhUPMWwjM2k/m5lRecs6qVF12fsNyw5lqWFMEoj9g9YR3kSwQg54Iycdanfu5bue+ui5tzvbw7PbYMX0/1Nmu47n57CVhXqV0+bcm9oqY/M3VBbG96eztQYQsANjkNlHAitzrPTxbTAQ56Yf5KbPCWhSJP1p84u6of+zhtW7P0nLkqb8wvRBpF5B4VvOcUSW+XHfMNhtQ5eGHt9t4nufvEFYXebrzPN/e54nlGEXijdFPKwLRs7wUW3v0u9D4EJlCm9V6OxwRVMXNV+VsN9ler4w+vnHPOZWYYFYm2xtOa59/6kRH1QEiLCTt1UjAUiZ62nujSShuOyWeZYy8pCRt8Or8Utf56mYh1XMuPtjFApaqSMJjV8oWu5B5gRQzcTsw+gVftJZ8Gt7I8PFSZp6/mFp+3vpJk7CkUkVy9o2+5UPXN9Cyb+/xDlf69sLX03Jo//hHWz+JfLXwvlJnXg5PeUdbTxBhgVK/5PzvqJyYroLS06vmIoZhGEZnMPOinD4yrbi4km0lnCt8di7/1vTRl8JSZtJE/Pmpub6Uib7Hw5q9tzLJH9lmeeKNfXTNC9Ar8rUGhmEYhjHU8mLoo0FZtBE2j2EYhiky88OrnlhLIncwu4QTwxeX7Gz6NOmUDvFLXecqL/S9UzMhAMB79ncIWMat9Q4/pZTKQ5c+P8EPy6rqF8i2HWe65wKUJgYsSpfnp71xr/WKQPTRCEJVefhx34SiWb6eCIq67PMH1wxYeiIo866HKfLVdVJ+uNkZan9RfaM97fcESVEk3sgUf+NMfGB7h4UXS7F/qivilY9PdM2qVJV++rrl+69qPjXXNxJSbyrO1TSDfXVdmIn22un1hlKWZVmWLTXomRxD6SGWZVn2I4O+YB0BS/X9frXiCO/WJD91rre5qjrFes+birP1xaZ6Qs5ZTJVs1beOuZStO8uS/bSBYVIHLOrh2ULWcj7ceqcngiILpDC2Fgubn13NT268M02ddzYfrvju5q2rkS5Ijf6uq2ebf9Y00SkSXx1Z6RdsfiERZEUg+nzWEt6OL9j8bRW8O+7RH3zFV+YxhtN2aZnKgxybpzPbvclbQmmo+Spv3+WhWMXfyiRfs79l4O375tRpR3ON0XwmfChim1pvKtZnF5vOE9JoMZWzpmbHdGyzlSU5riJt9QtweYKvr+WHZUqDUmetQccUcWKQUvkpYevt0jINTthrixgmr5J/lS5aqrNdx/PKWoZi5546yVfu1+6KuN/uJ+WV1ucZ6jwFAMi8zRew1DHrgb2ZDVjR+KTOdh3PreKlGYGYSLReJylgLcwvqXO/kPKDbAoHi/N1THb5v37qaud5nr/DmYt0bOMNUrGznOu7+8WWxC7CosSApcqeAdeoJI17xsPtI2InOfBBgbH++3tD8T1ci86mPSkavW41sjuNXLR4S31jr621un1UnXU07N1R84MoR4ts0ncRvksL1oqLKznY4lpM87/TtWCtJjjBVxYdZA261AEr4GzaXhXfghVayyvZ9eSROKskHsR18ku280e5AXnWZsouMnN32pqOFJZ+0WJt4yMHlyn4UogF3EVn04cJLVjhnSkP2x+J84o7xQ6UeJZhIlunSLyRSbOp6tzPdYXVrWL8x1fE1oOllo7n794plrYFK1FgcT7+HSP+AlTlN6+TWumiK5F4I1PEicGg1/7dVTGSDL12sy5deqZUnequKy1vdcXnyKWXrcYiS8dIqnWps13Htx15m0gNAPCn2HwBSxGI/uPWUX+mA1Zgrocj1/5VV3Xy+ztfVZXVXfu+tuxI28iKGnlgqyujD5sJIWeMhtyjHdIKpZSujNpv3BekJZVO9bRcvPbopbzs4o6cs7kXVWVm9LlbkgatxrytFtu4JEnSa9FavcP8oxjrWnJ1kC9tHn/id6SUUp/7wbmq49/bnrSRE1/dHZpJ9Zz7w2baVcoJq3ZaLYqtn+QajGcIIWeMBSXa5q5o0AnIzweea55SikD0xcQWaqWxkWImVGEmCMJ9UrxnrTCkLjubd4WaKFLbeMAKvuIrDxLBybP61M9gRSD6SDNbqUGfd9ax5BVIMcuPSrxRV93xZvJtApYq9f3Y4/apmpCtzvaT/bnlV4fkQOjkiW9tkgVSoDd8FG3tq3fMh1OLxLO6mo43IykCltdu1jG6Sn4iSCn1iVxp6hYsxd1xtDy+8ikkMCdwVYb8fXW3+93eDWdI7RrWCFhLo7bLhBDS+Hlp7r6G3t+HHrZrXhX0keKz64TNTzV4ImTabi5K1VLlSXtwqX+yo3Z/XWdSMR9V5/q5qsKcfadu97vlxP87bTfvKspcgRoAQGZtvoA1azNtrbV7g5kOWIrEf6YNK+M2y7ZQ12Hs4eqXF5X4QuCA7PxmX+4X9rkxnt22jxtWfNLoa82owKXe+rys7IIjX/G/TS1NiT3dPXFDIft728iJKwOyGvqOhbtbBjUv437JdnJH1mcdU+GfJTYMBAZbdhc3OVM1FKmzY2OhEhR1yXnzLPdAcP5oKTzKu32UBuYc31axlSZLvcX0idF8hpAzZmNFVXNvdLyYIpCc0qaulAFr3yFOXL0/SpF4Y7bJNpv2FzYasJYneFMReSqnewYr8vTkgP3H3nBydbv6bVcvtv/aGwlYeiK8bQuWZht3t7hC+37pGdl12Opejp084U5hRZ72DNgf9IqhYQmvXP0PuIt3xd7GcMDSE0FJ2QS4PMEf0TE6Q61NdF2trLw6nFyDpYx3nfq07mYrqTleH+qzKzdZGkk47uTsMn1/pX5fLsNsO9Dclzjub0Nfc9UWLHVxejw07mFrg8MfkD2i6JEiox+2xWX91/Mp+u5k0c6ZDSnDd3CYK9KnykN+qetcRd3VW8Rsrm8kjRZTeaXJco4QQshZc+n2XFPLzfqP9ExWzoFv+uM6l1c81opVz0MAgL/SZgtY6rKzeVdJ66hK/4SAtT208Phnc+whtPKyo5m75/zdef+R6HPzbKGlO+Fmri45zuYxjL7xrr1ub0Hjf/of/ZvneZ6/Qdj8yOt+dEyZLJBi9maXrVkzGPC8qVhXYDwTepCet7C7csJtJ5RSdUXkSrKi1VHxSg36nGrrSKQQS53tv3DsQrTTM+0MR6oiz0iS5B7o6xPdUopRhBNjoyO/PzhbcSpFc0LSLk0nfcBKLKamlNLgBG80hlp3UgcsVR5qb7rYcr0tbrRB+0PrP/eyvChyZbtbBgNvE7DUlZH2E+Usy7KHivOzokVp7MFiQ1Epy7LsoVJDTlb+3o8MOUxWcUPv86H2b0jL9fjje6/belLP8hMiV7S7xRVI18fqHeYqdQzD6I7wE8tJGzLTf+W70PQEoV3itdfqwlcBpYvdli1GXlJUn+fXAen9tGD5pb5fXNFwn2JnruMCVASiD1W5R5vrYoIiV2S4KCQmy8Bc/43mds0p4bWbdaEGbErpbLelkOU9VF30/DqUdEIqEm9M2+cIAPBX22wBa0EgpZEaYVkghi3mjjGP6Bzo5g69e8Cqzj9UWZqzizV9nJ9d/OmnxTkJLVihD8QeQqoy2VGTV8aJPqq+aC1J7jub6baUsWyhngjL7h+/aH4a+d8pi59muy0lZvsbn7wUe3JpV730jBw8aY3rCvHPSLMpa3UWu09tiT5aVO/L27WVTQ/6HfaOttZLLT/0Ozvqj39jjRVt/fD98SOnusYVGpCHbjfUnYsGvEZzaQ7DMExWTunnjXHzQMQq4pMEvfZaXcKDbWVEExzTFbk3njEWZDHbK7S1ycFXvNEcyRxpe5ECrkt79n3pmOoLjTZQFxcWFFkgJcYOl6N+D8t7qMSX7+HEt5wbYcVjrQjl+xXxxtETN4SplL26lAYGW/aUEcdof+j4qkvzC8uKQHKMdz2Ohq0sL1EPX16e3AQYlH65WHmE3PnObNAxukpuOE2Ne9iSq2X/NtIfbimNK5LbqEivX/RQpCpyJ2eMhqysWK/f2wUsSikNyuLjO4TVMfFtlsFXvNG01remlNKAq2X3NiKEp1ZbfaU+kSvdYulOVwkIAPDX2lQBq2/O+W1ZZbS2Q/WJt6p26BiGYfTb8/U5kVvtiuS42+EQ1zcNejRgqcrM5Ov5X+pzjtkGf2D1RPD5fcrihGdWTR2wQlOSjgnt7d0jk9K4zbJ1f5PjlSRJ7v5bF24MyCpVJ/lPPrE+a4s25wR9829CE1zZLIWlnCBJY/3Xv7kRqkZXx6wHknrfYqtWl1w9aaYkjVFl1/37LlnVDo1Ul4cuFWVl6YuPNl3/j0OUZEWlEs9uMbX2RXsq75Pi3Slmt1LcHTWGQmPFHmZbQTnpWmvtsc1401G1/awjbu6AoG/+TaQsjKrST82Xf5EUlVJl5vnvq82QLvEskyyhS1H1Oxr0ZVb3Smg2rGuENRy4JEjSG3l5sKXoQ/NXzZf4Pnesd9Uv2b+qMtbz4jon35IFsqek9YVKKaVLL1srdAUX++Vg/M9DC3bU6yut7lmBFBnMl2+R8rwD/xqUpNey19VysNhMmi+1O9xJxejyU2KI9I7Jgxybx6Roy9Huy2GuqKjeMR/bRbpQp3lshyiSnVQdqeN/X3N0oeqbfx07MOMPm6/1Sn5KqTrzclBKM/1D7LRUfL7o6If1vuEERa6I0Wt+eV4gR2rtE+u4XH0idyCvvjfSMOvhWYPZPp3mi41ay3ZVdUxgrgYA2Jw2UcDacvj46RM3hlKPToq/vyuTvc0VuYZjrcIfa73Xa/uz1CXhwu6qjjfR50fA+e1Xff6UAUtdGLpiOfrVtdBwsrYmY26usamNj/X6zb1xnDvZ+tKrWb5f6r5xqfVOYhdhaPbLxW7LzuireUTKji3NuPp4jfXmKpY1NTvGnE37YuUsqnd04FXsqa4u+8buxC82Vb+VMt5Vt7+wrlNyt7HM4Vv9d0+U1Fxzpqy1T+Z1Nh2qsL5M/cvKKF+Vn2U4esvlpVRVpvqv1x2zcHZx7b9WlK4Fyz/a+vHWeodfEYg+0ps5LSuh4uiGnjl1YYgz7th33h7OiJMdxlyGSTdWL+V6d5tsf0S+3JO6jy4PLauU/mEz7Wb551LPf0LZVx1tLdna4PDLAtkb6W6ekRVVmew4up/0zi3LQ1fLd5Q2xE+FrwhErwkcQZErWq1FSl0SLuyKTQdFA86m7YnfJDDV8VnWRr4hpZRSn5s35WQVVN8aWqKUKn8I18+YLFzSpO3R03Jh6Erj5fDUIRvpo/fazbrSyLvE8gRfb1lXugpVvx3ixEi+CjibtqebNCQw131m5740kzgAAGwCmylg1dz7I23dT9L9XZ3tJyVZWQdjt+PUNAFrRWw9WNEyJNOpDuOWKu6XfuEXzvjBBeFlW2LAOnTF0XOtITpHuTrbT0p0B5p/Fqci93PVN3Tzwj23krogKbmLUF12fv0ReZa4rW9Xmq26+fIPYoGAUkoVWRIFO8+RM5ZGzt7NrR6wVN+Yre5gGXkshZq7GCMv+eWhq+W5u8u/erCOJESpMt51+ovLg0mzhoZH4XHOOc1ClBnnrc8NuQcb7ib9GaI46QLWtN184HNy8cLty59vjUQT1TvSUR+rFVMnbUcLI/s8II/esxgKLN0za3+R8OQd20vNZ5MS7Rdsvt5w+KipnC0/0T6yEvDaT37w+fmvLlz7/nPNukY66irORdr/lDe247kJXyE0ipD9+qm0TIPS04usbpUWLOWltaKsoTc6JZW62H1qS7QeK7rN8ot7lr25cXOBri7g7f+yMPcwF5ehV+acN2sMOw80/HtIe7wknt1Sbjl1uIYfjfzyugNWcMJeW2yo7ZSClNJlyU7M3GDkzFuW7BdJuhYp6nNbPy1q6ImV8C92W7ZE67G0Qom2fv1trgAAf75NFLDC5SCpfcHm5ybc31XpbnVOnrFjctUlhwJQv2/qKXfCcin01wzVBfHhtSZy1nzgo6qWruHepsJYHAl67bU6ZktBdNC4uuC6bioobx2SXA9IeWE54Z1vFKoqCwuLKk1T8a0JWOqC67EgKQvChfq4OXuUxXlZUT3WA+sOWOr0QKe9V3CKo79xbHa0hcA/yp8oztdl7Sg/c83uCv1Naoln46bP0k7HFZBHbKT66Fe2F+FGr1iJT9DnftiwL5fJ2lFqbvrBObVG44AybidfEG1rjTLxhBjLGh66U/QJ+qWuMwVZWwqbfk2fiNMELK/9eGnrSGBB5L8oyNplbP6x+1knd+LzBmvvSGxU28SI4177o+FpRaVUXXl5ozJ+HtRVBeTXb7Qde6rPu+AL0oCzaftezSjOafvxz1pHlmSRP16gzzc2d3T3dnF1NQ3WuL+ANOJob/9ZnNY++7UTmusM5lZBSqpzD1HGu05VVrcOyCpV5XGX6JakkW6yL0Wl0YrYWnmcd69z/lG/9OSr8rLzcX+8MvJdFamzrmBLVmGzM9JhGBS5IiYr9+gDzV/fXD1gTdvN+ZH6dpbwghSkcXO7R6Wd3cMvdZ0tq74+JAeoKntczz2S5O4mBVtOdSduckAW208dbX6CdAUAm9smClirJo2U93f/lEt8vcZDVJF4o/58e1/nU3di52NAdve1kcodWVk55q65yE/Vqe6vQ21Xitfdz5OKA1Utv0RGMPmlrjMF2YdaR/za5WebbLPqtONSfX04Dp6LzI9ASL3ZyJq+uvntqctxk3Gr0/3Xz5TvyGKyK/jJdcYAxetxPvzeVJjFZGn+LLG6MvrT1XYhrs5J4tnI3FyRMfbhuVvFu80kobcuvoZa9bl7ONLU/qtHXkfuU5ek/w6Or6iUqsqc89YJM4nmthSWRqzVucaOqfV93YjA7MPmL8MDJIM+6dd7XIPpgEHPJMkuI10vZZXSlVePbjwU086Eufa38o08IOV7Coo/0Oee7o4UP6mzP537MvznWVTfhHCPqzeVGfRZSduRU0o6k/9azlqCPs+TS5Z6zhH5i+bKGyd/9kBOFpNjTJx6lPrcj9rui6v80SENZcZ563QNsaWcrjP0zVZGrBW5puh0IVQZ7zrX9PCN9gR462G8a1N97u5L/6zjon/KyT/l5BsObGOY7UlTj1K6Mi70iPPrjc4AAH+ZTRKwlGnXf1ftmVocdfzimn6Ld9ag7HryeDT9Xy1TZ4T2+86ppCUvufgLzVyHQ5xOqPLwSz22vqnosycoD9janW9WDSNBeXhwLMWsjEujj2xC8qpXpc4N3L+f/NcJ48nD9scvNUFn0eMamVfU8F++Tljg9NMf2n9bY4Frb9Zkz43/xHUzpRYtml4/37hrLFVoC41C0JheTyRcN3XC/vXle7EQo66Miy9SZJTwzBcaM0lTYq5jbXP/bU9IyZRSqkwJnaudvWtbkXr4jtTT2MatX/H5V/2dBdfDzhSXybtTZ4T20Fy+8T+e+vV+3DkMAPB/zCYJWAAAAAD/OxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwzZLwApKwo93CKsz8pLyV28LAAAAwDvZJAHLw7N6hmEY5v0FLK9otxI2j2EYhmH0RFh9NYpAQhsUoWd5z7rWE3zFV+YxDMOwvLT6b8atQ2cwtwrS8hoLl0U7ZzaEP1JkvvpUCq5nk6SnF1ndOr41AAAAZMQmCViUUkXije8tYM0LpJjRsYQX1pVIwuHHQAR5gysKeu21ulD+WTNgaT8mddYadEwRJ662ecuS/XQRe7FT9FLqHeYqdUxeJf9q1S+0LAmtZkOxmfzDgIAFAADwZ/lbBKygyBUxxUSY38DWvF3Akp8Sg95Qf86s31jAonTabs7fWAJSBKJndGa7d5XfCb7ijUcuPpWCEs8iYAEAAPxZ/g4ByydypRsNF28VsOYFUswYLgrzT8nGAtay9PRrVpfHcoMbWJ/XbtatFbCiELAAAAD+RH+HgOXhWT1jMH9H2HDnncF8da2uwvgarCIzZxfl1T8RlIWLBibfbJ8Of3g9AUuzGh379dM1a7Bilif4I+voIoxAwAIAAPgT/W0CVrQkXB7mzUUMU8qJvvV9PNS8xOgq+YlVskzwFV+ZF/6d9Qes6KelXy6yeYzuCD+xnowVlIevrr1JWghYAAAAf6K/TcDSxB1FIPr1jwqkNFwgpau1e9PFmeUJ/oguGo82HrA2slXhdMUYTtvX3+KFgAUAAPAn+jsELFkgBm08UgSiD/XlrdeaFejRaSYSrD/GhYYfrrlVb5WuKAIWAADAn2qzBaz199xtQFDkiphICbk8yLF5jOGiEK2pCs9clWaYYVASrpoN8dVOwQm+UsfELSTuqyS3YIVKpnQG8jRVGXtQFm2EzdOxV4dX3arIelOnq9W2Kk3AWuOLAAAAwFvZJAFL2wIUafV5q462NELTQYVq3PNYwsdP6TkvkOL4matCaS86Beh3PyYUxctPiUGXtoEqxZaHSuDjZ1KVeDY2zyhL7jyOr6NP3ipZIAYmkWaoY4qtStW0ps1Zq38RAAAAeCubJGD9xUKJaL1THlAayTob6WcMr2OVQq6/Yqve5iMAAACwBgSs6LjC9c9EGpRF3mzQbaRnzSvytYa0XYR/1Va9xUcAAABgbX/3gBVuJQr//Zn1CDX55LHEttbMWInrIJ3iOtPVn7FVb/MRAAAAWJe/e8ACAAAAyDgELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyLDNEbBksZOwOoZhGJ3BzIty8K/eIAAAAIC3txkC1rxAjtTaJ4J0WbKfNjCMrpKfyFjEWp7gj+iYvEr+VWyRwWGuSMcYLgqyVyAGJo6e5T2UUkq9op0zG3Sx/0EEZZX1SDzLMIyu1u4NrUcWiCHymWVJaI0sSmcwtwrSctrlBF/xlXmM7gg/EfudoMgVMToDeTovEH385jIsL1FKaVAW7Zy5iFnv5gIAAMB7tAkClvfxxavDkfQzbTfnM4yRlzKXDkJxKhZ9QpGrmAjz4RiUYnWh3yky88PyOtcSCliMrogLfZdowAqlxjyWG5QpDUqdtYZQtksbIYMiV8QwOrPdG/73K74yL/QRRSD6WATUfGSCr9Sh8Q8AAGCz2AQBK44i8cYMBywalIWLBkZnIE9lSqnXbtZF40u6gOXhWf3GGoEknmV2mUmtIRyeIgFreZgr0mna5MIbE8lhKc0LpJgJR8Cg116rY/LN9mlKaZqAFeiDOTwAACAASURBVNppBiKsNw0CAADAe7XZApZP5EqZIk7McENMKLKUcqIkkGJNB1y6gBX6/Y22YBnI06dc0S6zfToasJ66uKKESKQIRK9poEpJfkoMOqaIE71PiSGWz9IErEiCRAsWAADA5rDJAlZwmCvaT4T5zC9ZfkoMOt1B9qBOW48lJ9VgRdqB5GE+VNKkY8mdx2sHl1DAEmYn+CP6Sn4iGA5YDgfRJ7Qthbosw7VT6YQyU95Bdr9OU4+lJNVgRVrZvCJfa2AYhsljidUurhbeAAAA4H3bVAFreYI3V3KD76ejK1RWxcQ3j6VrwQoLSsKPnNnAMAxTVGtftfI+HLBk6rWbdaWcOP1uAStSehXfmZiuBkuzud+ZDTqG0RlqOyU0ZgEAAPxFNk/ACspCE/teY4HEs4mj69YIWJHfGuTYxJF9qRYeClI+kSvVmfnOdF2EcUVgq0hRWbVGwIqsYJirTBw4CQAAAH+izRKwghM/1lrec6PLWwes9VSRxwIWDYpcka7S/I9djJ4IswlxKtT3Fy5a3+hK1xewUn5TAAAA+PNsioAVlDot5tbhSJ1TUOq0kMeZLyN624CVPLdCcIKv1DFxsy1oAlZksonQyuJmfAgtSjvRV4pFhb1twApO2GuLIoMQQz8J9TYWv5fiNgAAAEjylwesoCzy2vk8GYZhmFJO9IUrutesVVq/tAEraaLRxGLyIjPXETc7aGiUnzbrxAWsUDNVdGVesfMiq4suyh5XMp+8qLB0ASt5otGEb6EzmL/7UdC2BoYGRWZ0ZwIAAEB6f3nA+j8qlGnW09P3Zy4qrVAyW0fhFwAAAGQAAtZbiLS6rToh+5++qPTCU06gixAAAOBPgoC1UaEGpzyW2N55Vs8MLiqtcNsVe7ETk2MBAAD8WRCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwxCwAAAAADIMAQsAAAAgwzZHwApKTy+yOoZhGEbHXuwUvRlevsSzTDw9EZQMrwQAAAAgZDMErHnhouXiUylIaVDqrDXomCJODGZ0DRLPMnqW92R0oQAAAACpbYaApaVIvJHR1dq9GU1YCFgAAADwJ9psAWvabi6q5F9ltgELAQsAAAD+TJspYMliJ2H1ZnumK7ASarDyWGK1Z7zMCwAAACBiswQsRSD6SALSVfITGW7CigrKIm826BjdEX5i+T2tAwAAAP7mNkvAopRSuiwJPGHzGCbfbJ9+b2sJeu21OvQYAgAAwHuzqQIWpZQGRa7oPacfRSB6BCwAAAB4bzZdwKJeu1lXTIT597YCn8iVMsx7XQUAAAD8rW2ygBWcsNcWG2o7pfdVg+UVOy+yOt37XAUAAAD83W2CgCU/JQZduL7dYOZ+FCLRR5F4I5OJvry4CnqW3LGL8jtvNQAAAEA6myBgAQAAAPxvQcACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyDAELAAAAIAMQ8ACAAAAyLBNFrCCE/baIkZPBCWzi5UEnrA6hmEYhsljiU2Ug2t9RpF4IxMv49sFAAAA/5M2VcBanuCP6DIfZILy8FW2yHxVkIKh/9Yxukp+Yo2IFQpYRl5CpgIAAICN2UQBKzjBV+p3GXbp3nNL0bTdnM8wpZzoW/XXELAAAADgLW2agCUPcuxBIjh5Vv+eA5YsEAPDGIggr/prCFgAAADwljZJwJoXyEGWG5Sp570HrOAwV6RjdLV27+p9hPE1WDqW3Hm8jsotAAAAgE0RsIKy0MTWdkpBSt97wAqVeekM5Onq7VfxvCJfa2DWU7kFAAAAsAkCVlDqrGWbhHDj0HsNWMuS/bSBYRjDRWHDbVGhyi30GAIAAMDa/vKAlWI2hNCUCCzvyeiKwuMHGcNpu7S88Y+HKrcQsAAAAGBtf3nASvCeWrDeMV1FKrfepukLAAAA/nb+FgErKHXWGnSMrpIb9r7N52Wxk7A6pqjWjhIsAAAAWNtmDlih3sN37ysM9e4lYXlpvZ/KY4nVLr5VOAMAAIC/n80WsAAAAAD+z0PAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMgwBCwAAACADEPAAgAAAMiwv0/AUpX5mQVFXfsXlYXphZW0/0wWUNazVO0HZGl82hfc0GfWv/CNbs2fSFV8fuWv3oi1BOTXb+T178LMH31VUQKJP1NmPePeNXad6pcXM713lVlpxp/hZcZT5T/G51e9vt7r2mfGXsytJPzo+fCbNPtRVRYWFmOHO7A4v8pBST6Rlhfml97HxanOvByUMrlk1e/zr2NxqvzmtZx0rq4m6Pctr3c7lZnRF1O+TH6rZZ9/A3fdde6EpI8tjA1L697sDe2Q9V+Mqs8zNOBZ644R+3VZGp9f973jfZ3G/5P+jwQsZaKnvVd6p+ig+oa+r6i63CutdY4qL61V5Q32cYVSSgOz9pN5xV/1zyffR4K+uTHnw2tn2JJK6/CbvvYf+l9KMRPio/s9qdcVkIeuVhSaWocWNvp9Ul3zk/eOf9bID86Hfq4IpOBwS/9M4m+pM8Lt23ZxVkn6LHnw0rfBzdiYJef1i/8W5QCl/tHWw2Wt4js8Thc9rpH5lKdBwNly6B/Nto18F2Wi7/FwYpZaekZ25pRwrshGpguF7+/oe3hj2YmOl3F7SeLZrEqre5nS9JHO52qtKClv+vntL5PEHRKY6z6zI+dohxTZlqn7xyu+7HIn7eOlp5f+2S6u8qxNuasppTTotdfq9B83C0ln7DsIOC8fOn5DmPJTSmlgiPvkxOVud6qzbtltrcw2nOqSYv9TdVvLsvYQYSHVgmVn0/4d1W0jKyqllKoTHVUf7CO9c6k3fcFRX7Cz7vFs9P8Gh7k9hoprg0sJv7jkvHHDMSGl5e5u/frhmE+llCpTj65csr9M2JOKQPTZFa0vExf8thSJPxL7mmktCGRPVgknRn9N8ftSn3uBxZlZn0op9fDle6rbXqS9A2iXoIx31e0vJH1y7H9rL0b/uNA75Em/1yTXg7P/vKK5yoIit3/fl465AKWqb2zQFQvW6sro4zuOyfjL3D/aaiw+9ZOkUqrOuPpG4vb5yuij+640r2Eent1W0NCT5qzY4A7R7huB6LUX46pUeYArL9h39uep9VxX6qzjbHlV68D6XizloUufVa/2y4o8/TrVERkT7j10zv1lb1N/ic0RsNRpR/M/TJZzJOyM2VhhNJ+J/JM0Wkzl7Ccn+HWdiJrFyuNjM7HLRn1tq9mxu2VQ8xxI+QKhLjnO5u1ucQUo9Q1cqj7fJfkp9Uv2fzWHUtfKK/vlxnrLP1hDjo4lbbbu/oEx94Nj2QYzx0d9ZzZsi4QJv6fnoWNEewt9+YR8uJv8HP6Ru4+rPsatkbdW5pw/nG1+lPT4lAWy94B1LPxTRSB6AxHk5M+rcz/X7dxX1zWuuY94eHZ77LPvRWDWfjI3p/KSc1al6rLzG5Ybfoe2u2m7eUdO9V1JVVfG+n9xa1oTFIHot8a+y8qIrZmsqvGMsSCL2V5hfa45qVYm+epsZlup+Wzk104ZC0pOPBiL/c57P/oeni0mgkxV2TMghNlI8RZTa58gCD1tlo8ruMjdLf6lVp3tOp67t8m5GPtCqvz6tayqM8L1r1bfHck7RPX2kf1HOOe0b/rVWKiRSeLZrQ0Ov0oV6Qk5e3sk+kRfErmPcyvb3P4X7Wf/2Ri7ij8JXdSNFlM5a2p2TCfl/te2mvzc412zqnaTB25c+GFoY00jcRSB6Pd95wo3E0b2J6WJ1/vSM7JTX2D5oVcQhP6HLdXHuKHJ37mD2YX1d58JgiD0d3134uxPsStu+bemXdsqeHfo38GR1v3Z+p0W+2zK60d90br/UMtQ7EpU3day7APan4R+vOxs3pXPWtIely/YfJ2+uK5jdIlSSldcXMnu8lZXXMiVeFZPhIw1XyoSb1xzeeokX5GdlVP6eeRwN54x7i08cd+dHMtWXFzJrgPNfXOq5lisjNnO1RFekGKtucqbjtoKciN6FbW1mHYWW67F/n3ZXLg/cgeTBWLILjadX/2kvi5Ego5P5Mp21P08p4a/oOaz5y3szuyy6y+1W66OWsuKT9gllVJKPTybX2yqjy3WwubrqqyvUr7NeXg2n+U9q+279e4QrcCs7Vj2Aasnuo3q0vzCsvYX5nra74mx+4zb3rCrqKlXc+NxC7b7rtB9JigPOAbk2IqCIle0vcmpuebiHp6h20j0f83aanQlLS5NoFcDSiDy/9UFV/u11jaev0NY3Q5j063w4ePMhsT77f++zRGwEqhj1gMFlu7Zd13OYrdlt/bOddZcutNgPKV5pnxeuvPwpf4/FKqujLSfKC/XpLp6U3FuPvtF/PV6S5iLnoNxtyFFIHqWl2Lr1t7WZYEYdCy5w6fWZrXe5nn+oWs+bdLxS13nq5uFVC8NskCKY9dzLGCpiiQ8dmlD28okf2Sb5Yk3biNXvxd4xc6LrI5hGIYx1PJi+KNB6elVcxHDMAyjM5h5UU4fmVZcXMm2WIPQ8m9NH30pvH0Ds+bL+gZayirJk4nwPUARiF6v+S5Bn7wU94RY+yGkKpMdNTu27SOP3eE70viQ9bOcHSdtKdqi3t/Rj37WLwlPuvsFQRD6Wk1biolNiHo+raiUqn7h4p64U/SUsWCv8Uxj7AcWNj/nMDc0rywurtJtoQhEn7BzFI/t1MlQ7FPnfj514LjVtaBKPKtvdEwNth3ft7P83PVeT/ReGRy5/vEnbW7NiaDOdh3P3V3Na5viAnOOb6tNluj2NZ5kd2TvKP38jOYrNNabq1i2vKo5XctQeoEX975td075I4cj1OAR3Z+qIj04XlgVybI+t7V6l/nGY+6zPaGMJQhC783jZafbejtbyg9Y2noEQRCEQU846qnLzuZdOy+Ez151qrtub2GT42XH2VM2T/xptTgmuKbePKw7/fOcGpBdnfddCypddls/yYtGSUUaGJAUSqkyylflZ5tssyuj9hv/cU4lnmnq5L9rT3dqXqsCs3bLbssT79xg3/NIko6d2wH5+cDzd8im4Y1bM2Ap7o4ag37fxe7IpSIN3arKKTieuCsopT43b8otvNA7uxI7t5XxrrON7S+fd9XtzTZ8bnUtqKFAX7ifdI9JkjRuq9te0tTtliTppc1SUEgeuyXx2fV/HmloE8KdobJADGk2cmnM4RhJ2AnLvzXtOdYhragzYy/mluK/YPL3VZeEi3uOd82qoU5h7eVMKV39ZpJ0U1UXnv+qbXRc7w6h1Odx3IvcJ+5w5qLs0vqb4X/+8L15T3ZBY2/0eaROdFQXs5ZVAucXbP7W/Iqb4opKqexs+ljzGkkaz5irayyaG8dZc+n2nApruBXTa6+t1NzB2i6bSw6TW23Rf98ih0vqOhNf/he7LVuMvBTaTUGvvXbL/taR91Qas1ltyoClCERfyonv2HMVmLWfzI177CVQl53ffmz50TUdevSoyvTz2CNM6G417S4m9wVBEIT+3jZy4kpCo2jkslSXff7gmo9YPRGUedfDFE/Y66T8cLMzfbiiqu/3qxVHeLfm9FXnepurqs31jYlB8LypOFtfbKon5JzFVMlWfeuY09xolCU57vVo9YAVlIUmtrZTCtKg1Flr0DG6I/zEMg2+4ivzGMNpu7RM5UGOzdOZ7d7USwjM2k/m7bs8FHu2r0zyNftbBt720GrTpLokXNiZtb/J6aU0dM7sXC2UrxmwfK7WikMNvcO9F85YR5Zo+I5vOGqbTHVo3t/R9/BsMekfdz0WJGWmj/vX3d7+SMDq771+rtY6GD4P1Unb0cJI3BxuvxLqHAzIHvF5+JReErnDJXU3u8VphdLE9ht1cWZmKdqxHBewlgavVRQUmi+38XxbawshZ82l25jc092/32GzC43nW+2uNz41MNdzv2cu3bN8SeQ+zotvmkqkzjoa9kYaFTIh4GzavvO4fSogckUGMxdu8Oi5xRYTYXbOea2qkK2/9UScX6FUVdztR6uvDckButht2fpRy9CiOj3QfumqXfKneRgsCKQ00nylLjmbi4q+7PcGqDLKV1c2RIM+pfENHvWm4pyc6ruSf7ClaHckSjaeMRZkZVfzkyvUN9rd/kCQ/FTiWeajZmdCM7a6NPzbcDjSRWrs1GWf3+f+4XLbLz+cOn4mHKPDDTJnzMaKjWfToDxga3/yNHLr67ORD8MNpiFPrlpO3HbFIosstn5a0vDzq96vj4UaJNTZfrI/7+iDN0lNlCsj1sqS+q7wK4qHZ4sb7UKHZW92gZnr9awoo3xVfpaxY4pSddp5397T1fpV+DYWbtUL398azaU5cd2g0YDlHWhv759KaMfNzqm+K2k6u2ft//yYc61Q/0jroeyy1t62VQPWitj6ySnbG4Wqr201u0u4ezfTBawULeVfsPlbtG/mjebSnFjLzQZ2CKWqMv1iQAxl2EGrcWcpJ8R3us3I4YfCitRxNLew2Zny3VVdcD0WJid+ar7y65yiRnbRfk0TVNBrP7PffMMZqYRRZ+2njnznCGdZn9tqzLHYxtN1xrp/qt+1x8Ql1vCoHuuBLae6w90M03azocw6+ncr3tqUAUviWV2t3ftuWVf9o/vCqeafX0yl6A522Zr/ZZdkqe/pqKZZWJVd965bI0++G4TNN5i/0zwLOx72jcqquuLpa4+8UujYxhukYmc513f3iy2JnURFiY9YVfYMuEYladwTOVfFTnLggwJj/ff3htImrBUXV3KwxbWY5n+na8FKllyTGxewkkpWp+0XrWL4IAS99lodo2d5D5V4lmEi9yNF4o1MmuCizv1cV1jdKsZvzIrYerDU0vF8A4XkMfFfdvm3pl35JtsflK7+xSmlawQsVR5uJxdvh96k53rOVpzrmhzvbfiwMLGW4n0e/ZUX/InPzPW1bH5usamekK+uC2P9ZE8k5YeffFvrHX5KKQ16u0/n5hhbRZmq070NxdmGo7dcXkpVZeo3vuHwgZpmvufu5X8988a238OXG4oPsWGlBn1OdShKJgYsddpxibTwXQ7BNSpJr+eXFG8P+ez2iLtNsw8ViSext6Bok0xoAW8eHM3dZbr9e/qjrPqGLu/L/cw6pL1vD9tvdLxDlUYk10o8W8o5JUmSpNfzYhu78yOjuY6zi/MroZQZlH+9fOpGpBfyzaOG8w+kFUUget3nttkApVSVOi+cvu30xi4HdZKvyN5iONEpqaHO02N8pBZNnetpKCw0tjzxpOiUDJ2xY7P20x+SvsixUCTeyMS/+wWcTdtTtHNeJ+ye8lCPsOLuOGEitheySunK4HfnOmPh9V27CBWJN2oSVWLA6ms1bSn4UgjtLnVBbG86e3tQVilVp3vPfnaqa+xNb2NhoaY1JbrTvH0XKs91xRqA54RmY/EHu/bVRSv2VMV9/xznjDzqVZ/0UvRI4zbL1vARfGmzFJZygiR2XvlhUHM6xVqwVHngyvF/Rlp95KGWA9mFX/Zrjh31DVw6csm5pNKlZ2RnUV23JPHGrbHEMO7kDmnO65nfWmqOPXg5+1py9zaXFDb2zo2lb8EK+ha8mrbhmW7LbobZUlRq+jpVGd/Gd0hEcJgrKqh3JC1T8c4vBiilqm9hRpYczSaWZVn2UKkhh9EbStmouAIbddp5/9Hvc5rBNIpA9LH+x/h20FmbSVfc0JvUvx9Z2LLz5jeO5Dcp1e9o2BqpHFUn+Yotpo43ClW9Y2OrvXb9j9mMASvgbNoeKoGilFJVkZw94obrwcOUie4r/2pt45O1Ozya0tbkIpWkLsIzRkPW9nJuQF6ZGX3ulqRBqzEvcpW+Fq3VO8w/ipoM10G+tHlCF1JCa7bP/eBc1fHvbU/ayImv7g7NrHpjVJedzbuKODFt2lwzYC2N2i4TQkjj56W5+xp6fx962K7JAfpIiLxO2PxYm3AyiWdDActrN+sYXSU/EaSU+kSuNHULluLuOFoeX/IVEpgTuCpD/r662/3udY9zSfllqV8acIVfm9YTsLIL2GOnmqz2gaQhV/Fj2QLy4L/KcvU5B/41mNzborzvo5/weC7UnITnLezOxCepMm5vOFhcczM+l/in+rmqHVtyyq9qipni8rQ2VCV1Eap+4erJlkh3RNs3NWUNXZKfztpMWw7U3wxdTreajB8UNDx41namxnLuvKk4O1qBq0511+3Nz8/dWt/z2tUnpBrgpspC877c+BeYUNHGnlPdf2zgYldmnNe/uRHu9dMErFh88fBsUV135J4eGGw51j65uLCgqAlX/XlTcXasMOeU0bBVczksCOQwe+gDPREUxX2vocHa+3NHe6hcxu95ZLXevUXY7Yy+qOrS07jCmtAZe+3mhSOXf5uL7t/kgBWYtR3LjoTCRNNy6JPqbNfx3F1m+x9LjubT9unYpzMRsFZp0YlroI0fcabKzktl+foc9tJg0i1aney++m/n3EpkBPeip/trduehcEakVF2cnUmsNwrIQ22koTG5BYsQQsgtYWoxUgUfd1mp8gBXXdPcO7H08nrZFpb7XXsfkJ1NxVn5ez46UMHuzd1R9/Ocqki8UZNm73Dmouiigm7rwWxd/r4jdV+ePJRXzv0ux1+SlNJ0O1xV3LfLt2zL35bLXrt54Vh7YtP3BnZI9EUu4mZ9aXaRmUsI4De/NRXlxl3jlNKALPLHC/KjxYKUqorbfuPReOLbtfGAqb4xdvJHCwEbPy/NKazrjtbHB+ZdXSmeoGE/fG/em7QNlFL/aOvHWw8ZT98eVWlgrpfsK/gonPzWXar/P2CTBCx1ZeR29b7SaPrOyo++aR8sztfFjVXJ3EqV1yNj0feG+dfjkiS5e5rKPuX6x2JvTpI06WgqzIm8akdudnSptz4vK7vgyFf8b1NLU2JPd0+/poMxrldRFkhhfHG9X7Kd3JH1WcdUJEWmHfCsSLwx22RL3/W1dguWujg9LkmSkyvd2uDwB2SPKIZH3whc6ba4ZufX8+kqdYIiV8SE+m2XJ/gjOkZnqLWJrquVlVeHk2uwlPGuU5/W3WwlNcfrQzXO5ZHSm8bPS3N2mb6/Ur8vl2G2HWju20h3RkLA0vDazbpVu5UlntWTfnmir/WYISu3ODrKLIkqP++w7C84XFW6Y7+Ze5icxih9r0c/4fG8V3OA4l+1adDn+bm5qrqhI+UAvYDP/bCuYJtmd8XtvVUDVriXPvy8d3KlW76wLwQo9UvCA807yk/RmiHNM1iZsp8qquGf3TqsJ4KijHedqqyKte6EfttjO7FXvzUn8VAqAtFHizaiTXqaypAkjRZTOctGusKTA5YaUMbatE9Hv6Oejb6pxw0RTVGIFq7tVX1D3NHmPrHNqP/ntY7LVkeoR093uPXlIqWyQIoKyFPvkrvn4X+nFDU5Im8/cPHRhKv93PeRIczJAWvJ1bI/vsg4tlNmxsYjx3dx6JKZPBvoOHbBPqFpmXdypbEGmbH+WOJcp40ELC3VO9JxqrCg4rNSQ7H5+4cD6aYnUCS+Sp+/Xc9s0ZTAnjWXbo915KmzrtiLH3+HsLpwk7C2J+Hmt6b9ZZeckcsqrgZLnetpKNyRv31XFT8anyTUlbHe+8LE0psH/9hPeucCa31f/8z4G5+69LK15pNwv56HZ4sstpdxOzw5YKlv7McL97W0X2PzWX5Y5I6d6k43hm8dO0SRnD2O6P3kF65Kt9PCPxNS+U2cjtzKlDfO26fLyi/YXg60HanhhhbU0LtWwYemhptCXBPjHzbT7ri7QfQQJ1yGlKqyZ8ApelKfbyHRzkrt8gtN/3Hwx74RltTI4Od5R33hTvIsU+NdN79NErC0fCJ3QHOvkQVSkObWs8ZyNBWCqbRdNhdszUmM3stua2W2sWMq9jRadF36R51tzKeqiuQaCN8i1SXH2TyG0TfetdftLWj8T/+jf/OJtwOe57tc84Hwg+1mV1xv/XlTsa4gUo983sLuStqSkDULTtMHrISx8SneutYx4CWyM0XuoIE8jTymvMNcpY5hwlVZCdSZ/ivftccaHYNee62upDXc/R6pfFR9nl81nUrrE/9lVe/I46djKyqlVB1tLck+FurfSU1bCDx0tTwnK7uCT6qu8k8JrTXFZXX84JyiKlP/vV33oZ7JKTDWf8939blGpXD+fK9Hf70tWKrUc6XVPuh80p54ZvM833brq+rCiiu/jYyNa0pnNhawop2enDn0KAuI7ecvdYpyIP7lJPL7LC/RgDx0rbr62pDsj523ynhXXXHsHVcZ7zr16amunlts0iCS86bi7Lg7+0YEffO/caUfmK7ZbJzZkH/QZDYft/yzqaPzlnFXaX14LFpbi2lH1kctzsHkQabxLViEhKpncqqt/+/Z7W8eSUr8lRg7nZJDf0INVugSU5eEC7vCXVeKxBsjdTaU0lAZgF5v+IhN4SODPl879io4cp1tsL949H1DOHnWm4r1WTvYk9ogerlb2kDCeouApSpT/a01H5bU8UNzK1R547x9ap8+W19grP+et/cNRS8VqswM3SXlO3RbjtvjQ19CQgrInkHBNSpJkrufK88trnvgCj+7xftnjzZ3RcfHhV9xk4rc1VlHQxHDbC/nUs0goE7a/lEdKXZc4/tSGpCdLRW1uAcTYwAAIABJREFUP0XyUapRhIn30sBc95md+y4P+dyhm6o693Nd0fGOyaS3uPXuEC2fyJVusXTHlYlEOgfDh0N2C/f+VW9u4OzivOKTfm4sKfzwo32fkabjB4xXh+TkpcqCpvwgbhhNX6tpS/JlOO1ovRGe6Gc9LaZeu3mrqeONf9be8GmkclFx3y7fdtK+yl36f84mDFjTdnOhsWMy8s/0jRZrUJWZ8bHQNTnxM9n1gcX2UtsupY3e6pxwPXaf3ZdX+nljtGm68fMD+6rOEELIKaNhS1Z44MZMt6WMZQv1RFh2//hFczR5pNza2W5Lidn+Jm5cm/YcXXpGDp609ruTXgJoOJ0k3N3iKivTFbknTUPwDgErOMEbNS1VQemXi5VHyJ3vzAYdo6vkhtPUuIctuVr2byP9/uhmMG/9EI3uXlWZ6m89UReZ50Z502HKXq0jNeHrB+ShqxUfX9dUMQd9nh7OXKLPqWh60Kt5O7Rzxh05xR/u1WcxWQVGYhtdUd/z0Y8OLPKOe171JtVgJXURTovCf12jE5IkjdssW+PeLBNeKxcc9XvesgVLTwQlNP0BJyqqMie0HMjNqXkQfUNXBKJn29yS/cKpW0NyUiOBb6BlX87ulsGAPNx+9izX/4dCPTy7PbFod9xm2fq258ZSb31eFqMvMtZ9ff3BL0Njs75oM5UkaN+02u2uOSWQOMg0RvU7Ln4UKviNm5oy7hsFRa5otYCVUIPloZRSfz/ZVkAEOeWwNWXmj5mUk0jFDcWilC4I5NMmp6aJesXFleSXku53mCYw1bQFmqh53lScrbkFqT53D3e8WJ/PNt1zxK6UZ0+46pycPaV7cxlmi8H4pU0cF+1XGyzkmn3IZT2cVGB2g7B5SY/pgDzSYSnYkmUwakaWhhJkJeGfuWNBISGO+CWbpbCce/bsanlOfuI0FurCEFdzsOnR764++11ru/A6ueZMs6iVuSHr0bLTbb193bYfuKav+aGXzoc9g7YLn5DH0srMQM/v8tKE6/ls3OGb7KjZVcO7fZqbqjJlr9tZcCZWcaXMbnyHhLZosKVwa/zbSOMZY6GmY04WH3U6xCmfSqnyRz9XU1J9zTnrttV8UGb97dmFf/KTyV1yGwxYAWfTdv2+0Eh27e1LGX905cekpoHArO1zfY1tVqV06demg+e65wJUcXfUlCS1L/6P23wBS33RWrJH08mVfP9akRx3OxziBiZDX+y2bKmwelbSxzVFnn4z7wummVfa/1ocndMO4pvkP/nE+iw2FCXom38jSZImwGka6tUx64FDib1XsXNUXXL1pJmUklJK1TcdVdvPOuL6qYK++TfRvkpV+qn58i+SolKqzDz/Pc00Kto1Kj5f6LPrC1jyU8LW26Xl2D8N+qLQdFbyIMfmMYaLwiozNQSHuaKiesd8bDMSRzCoimQnVUfq+N/XGl0oC6SYtf4mPiBlJWds0XmwVDdfkbul5t4fqzxj0r51BeTRx9yZ2rrmdkdb7da40VOCINwnxTur+LEV39SL0XC91Ps8+qoiD3Cl2/eyn9XU/+ue82WKgNX4eHohqdWQUpqykyuOh9c0Gp03FWevHrCiN1wbKY4GLPaGU2g9eqCK3B3UXhGKQPQfN1p/7Is85hMyREAWf+kZnXst9A6Fa8UyHbBWP/lpdLqEMDX1oM5I/9QOU0tb2y1SsTP2DEuamCNcFLzugEVl8eFPLjlA6ZKrpWStOUMWXPc7XXIgNveYOuW8f8/2b1L6QbMzNhjU5+ZrdlZYR1ZUNVRYFrdLxu3EZKxrF9eYWXy9LViq/PIR12Cu+6bdcefk1nxTa7fmSumzkQ91Ve0TK0vTL8amFVWVJ56HJxNX4ovKpcjFsituJyhvnLfPVJgudzuuHGJ5ifo93R12cVYJdZR/22Y9XqJncgylnzU7ptW4gBVtNw1Q6p/s+Dw3S1uUHfR2n85lsvQFxnquwyFO+VatwaIrLq5kK6PfV9NktTs94VcU9bWtZleBpWNEXvH2f1cbP6JclYXmsk+5WCFguM1SkfqtlpKsnI/Jg+H5t9ghMQF5bOR17OCqymRHTV6R6ftO17TmwaEuSULb2eoacndwTpkf4oz5+q3ZxrsTzq8/auj1Jp4Cs92WwnV2EVJK6azNlP1x66if0lA9a1xbb7NtJO6pqbr5itLIbL2BWbtld83Nx9eqd1bFjYX/O9h8ASvpjU372h2mTPY2V+QajrUKf6zjZqwuO5t3havmE++GgYG7bSOxc1QRiD5u8EWoKqw4P2vXcXtkDLI66zh3svWlV3Mb8kvdNy613knsJApNbrTYbdlJhIQp2DdQl+p1Nh2qsL5M/buhYb2xEWT91+uOWcIDpuKF17gwdKXxcripfB0BK/iKryWxdBXaRUxsxqmgyBWt1iKlLgkXdmlK6ALOpu1JretTHZ9lMUy60Yga03ZzPsNk5ZR/pxmY7Z/s+DyvkHR2kv3l36SdqX+VgBX52zWpAkpSfet7O/qq9PiCsUiftauc8P3u16LtctJIi/MWdmeWXq/XvhZrrCNgxQ53QGw/f+XZtJr6g2kDVs7BhshciOr08+HpcIPOYvfprdpZENfu2vbwbF6qIve3DliUUkpXXvCnvtD05USdMRvL42YtiQzqlF51kn9cfqKZoVEzhE3bCqj9RorEV20Nd9msP2BFRcNBYM7xbZXRnGKD681GtryquXfa2bQ93DSryG4HV7VD01WkKm6+uuTskymFUqp6nzafiP9LFVMdxiyGYVYd/JH41ZL/qQ1Yr8dCM4CkqPVc5YgnBJrkBht1ZdR2seEbXpjwqTTgbNrO8hKd7bZ8UECeympkH6pLkvDwXvieH9uH8tD1E2dt7mi2Vj0d1fE9eIrk7Hse+QsQijy/4Fnt+6o+z+/Pw/fPoG/O/Xzcq+neDfVFlkU6IlVFenyh5tQ1/kakUyE6TcMpo2FrzoG6r05+qGeycsq4odhL8po7JEH8WMWV59YjxzindnyMf8rZ3lR3pjk08EL5o//S4Z3lV51dZ/V6Iqx4Oo4cShq4nfS6FS1yT9FTry45zm7bXmK5515HF2Fg1m7ZrZ2iRXXzFblM7t+rczBk0wUs1WM9EHfw0oQAdbaflGRlHeTENQvmFgRSUtQysExp0v0u6LVfvKi5TaQu54xL9Kpv6OaFe24l9Q0l+X6qLju//ii5rG9DA3+U8a7TX1xOMU5ntp/szy3n4kaQKTPOW58bcg82xLcxUIlnt5RbTh2uiTXSrhWwghN2iyXWAxicsFua7J5Os47RsV8/lZZpUHp6kdWt0oKlvLRWlGneJtXF7lNbovVY0e8hv7hn2ZsbNwlqKurrJ6eK40ashMpsC0OBQx5qOZBd0BB63iRaxw5fR8B6n0dfHX/Y/P/ZO6PfqK307/sPyA2XvkCqNELiItKqirgoqlbmglFXIwFqFSFoZUHUVUDsKkBV06w2UC0BtJy+2QWxpd2t1TSCNi1Y9Lcp25DFbQl9E1LcNgii/ExJIMNgCiEJ8xo0SRz7vBe2Z2zPsWcmTDJnhudzBZkZ+/E553nO95zznGNRHneGms7WhHtK1663xKu3Ne1/e1Fr+yfySFLTtAczpKmaQgLrSfLaCHGOhyywso7gWhvwDkP5Fxp8jK0nE/Lftu/813ffffTOgW53z6ChSTsiUydJbY84dC4rxBc9Puh9Z+22U9lpnpCcbk+NWxPS9o3upOziBFY8XtQrDQxN2sHm9rhkVE92taVfE3f+Wcq9uciaH+ve/lJz7q0AVnr8qwPc6nf7Cxx5U3oOVukCKzg1rPR3teQlMnlvN3/95PrfISWNsa6gjZ6kERtbYP2QviGdOBfY5GHNj/X848Jd7xyToWuqIksfHX575zvo86HhiHOwDP3h+I0r8v90vf+Xt3cfON59SZ0YOL7lj97jZuztnLt7ftGunj783pc3puc9q8n5B42mx4dG/YcclFYgGM9qg5+07djT/knfNS3184dHPw5uYpibuW+viS/o4/L7O/g9XVcfGpa7kG0ZWt/+dau5HR3dF39yD859PHKhj7RJBWMzdeU/ww+9fYf1QN63aWfPyOipg4d6burRR948/G/rFpQ7s8P49ar4x/Xb2g7y8c3oP4SRf01Dm8CyZgcP+YfCTrQytP8efueUd63X0v69c1V9nuMFmNUutm/cnlurVlB8/cnrbiXPjne9uVkcyQ4OihFY7gtfC3Wx1uORbxXNeKy81+5bAjeezOhGno4shHFXRn9CsmerrZG6hJq3HLowQegyZ7WLB9fVrVx/7MfcWXKqGGfqVvsOA4wUWPqo5BzXnoWNi6MmNnW1F/H17knuXYpGXrHCxt2LB5rst1ZZ+t0RdULTxvrRhmC2JsZ4Xu1q2iflv+QuD88LHMyMduXUvsbE7q7cfsCnP6CXVhOfaGHk5MvFCCzCEqF3wXp5a98eiW4+6JyZbvx69YM3V69585jvWEu//f68X0MbOHeZ/GWMMba0wS8+d2aOcgejuJfiJc3KzDzSDa/Ayvmm9aT/YOL4D3cv/nn1moP90wsYL+hqz6HNv+X4t9vR0YMtu/ad/FTqFo85UzL7Wto+Hc6909Pf9uwjcGcH2xe/RFgYS78mbn+dcHRI+lJb/ZvdExl7niBCYK1s63+CF6b7j2w58K2bf1ZkkjvGWFfl/+ntH1Kuftm+bo1zfhvZ0IfDfd8MKtfU8SGRf9Ejxe71NK+OIcXAVmbsP4c2v7RO+OAz8ThCCB1ta9ne0na0/U88lzsvAz+91bVnV+GslyLOwSIILMISYVkElvXo1rVb6sAHv1/b8q/zn6Hd23e1vH30c+Wef50zIiXcxl0UtjR5fyLGsGu2obMDt2YMiywoj14YPv2P0zemnyrvvVS3dhs6O2CnNFn3L737x8PBU6CejJx8lXnx/3x3dyrPgGLyLkoVWPaPHt3495HNq+pWbDj89Vjeih829IkfJCTsPtR9ZeLB5EzGwgtTvW+zzvSnZTy82rWn+Z3PBidI29VDN4pijLE1r368tal7bN7C1uMb4s71ifiLK3d3j044Iz1Dn9Q0Tbs/qRs4M3Lqnb858+vGlCqLQuPr+05dfWhYlj4q7XtlRcOWP3/w70E1RRwi1h40CKynY9KBbcR58jz8a72zD0fU+6FruvMzYwPdB3bsQF95XkO7MD34tw2xOo9oWMnt+TJ73KihoFj+e8H+2pJYkX8EgHuAgjU5+EG7a/yRtpY3nffttAvNfMvfP33/wIe+g8utyaunDm5bU8eQdrFFYj3Vfrp+d97C2DKmhz97R8geoEIu1e6dq707lYy7F48cu/DA67/F7yIsFTOTvPRBW7uYfYWq8WBYOrx5VR1jn43pIzPxzdnzxR51ZuiaqlzsPrbvDy3tn+TtDJ/Vvvn8qzHCpKahoFjuWOGQSysoFpy49x4Z6vvuEte+ncX/9mHpZ/9Q8snEubdWx5BiLEwPvr8jfynbc8CJfcQJUxdxSKCZmVQHPmtdV/fCBv/x+k7AzYzJHwiJWF3dpq4x0x7SrGxIbHVvxq7Z8Zn6/+7fvO0J91Zm8qYi90jdon+f3vHz/kwg/yG3brEwhadbwgpscvD4vugzHVw+U4JHYtpn8D4Zl8W2xt8wDEM6GMU+W+HU1UsfHjjufaM2UWC96r4RUleO7T6mTNsmGvrE1e7WdXVM3TrCsZzee+nJ4Qsf7eHqGP+hQenhj9783fHhBYyte9J2dk3j20j8/Ov+YTWZOz7mB7R2W9fYLMbW/MR3p88Tj/AgPFrE25zOIJ71DXrt9lHPe94bGMxkKnx94oqYmZlUB6Tje/g3/+yeDG5lUop0ePOqF9Z5X/xsPZD3vex5E2I+B4XmbfzOj4efmhlVPnclZU/wTA+e3C0cDP3RKWXanLqdbc/W4xunj384cC//ocyxrtde754gNNViBVYpS4S5xzYeDok7Xq4LvDdQ6/8QdZx0T/izdPXCyd1cHcMwLzZJt4twJ2t28NALIQLL0n/88J33B7LLAtZTTTl3XNjc4O1FmZXrhE/6b45ePP4v+d7j6ds/X/jkr8Lu/celgTHvlJWVHpffb17D1nG7PyC/f73WoEFgLQXz9wfPdPUMqpOE9E4rM5M9QyZw8JOZvPypPBacSDGT/Z/+Vw0Kf1O/1ntu+EGkP5j66PXbhBO8no5/0xt2DlNhrHuXT//nRuEDr7PJ7GH4ZonLiDX907lz+W8tNR4qfd+O54+9SmE+OXhevjJyZ7rEAZCZvHzmm1vRnY2ZvPzpBdX/nccj8vfjhDHfEte+dV85f5k8nW49Hvl2+KGFfS9YfSaeJEfGZvwDFfPuj985o2TjoSJfcU8nMfRHuazcScLm76KZudb7nf+FcbPa5S+L1tlLhnG794PTg4QUt3lt8N9f/aAo1wKVnlGlDyTfmGH2kZad2MivpCfjg0OkFpWH9Wj4fLh7et505CfvLZxF3Ml4lLobXpmErT+EkGjqI5dCvHtherC7Uwm8R2f27pVv/U+3MDN8Tuz6n2+yqeVeC7VLH5760TfQ8Z1TsDQYU3fvh705NSS6WqkL7534eizsxRs2RRZImFWp/k+/SxaIfwvTyrlThSKei6lf+88XV4lTx09vX+7P6/tsM/RJTUuq9hvpryf1BbtGrJmRb2RF1ULbk5W5/8vdRb3IowqpVYEFAAAAAABQMUBgAQAAAAAAlBkQWAAAAAAAAGUGBBYAAAAAAECZAYEFAAAAAABQZkBgAQAAAAAAlBkQWAAAAAAAAGUGBBYAAAAAAECZAYEFAAAAAABQZkBgAQAAAAAAlBkQWAAAAAAAAGWGToFV8CV6GM+nrv2UIrxosGgs/cH9Yt4IVuMUUdTGbCb0jdrPIVYm+b83iW8JxBhjczYz5yks44k+W3TZWcbjRzPFFnXBNxHOTt6+V8Qbv+z3HBe+Xd5TL+h3b+e9bhIAAABwoFJgLVw/+dvfbjs5NB3RPRgKiq3b3//Qwhjjuccz2VdyWsbjx09IP7Smb1weyb5K1njQ08Lmv9M+9BWqOeP08Z+GCe+CfXYsQ1O+dSyM6MWfDJ/84+7jF8YcdWnok/e1Aty+Kr61U7xG6G6LKGpDQQ2JQ7I2j/HC9GXxvbPfXlVsrg6cRe98TLpsjWDoE0rPsZ3xPT33crpnYar3rRVrDvZ7W87T61LngGZYGD9WjrcdH7jnSJa0LNS/eqD3NlmOWZmZ+6nxkR8H5Z5u8W9tf9zUULdy3f4+LaixnlwT//Tno8hPe8uGxkMDk2Flb01d3Lc6tlEcKfBK8Kc/oJcatojXngY/WNBvj93PWWJoUjOz/oOR3LurrXn1461bjg08zJNnln7/fu02CgAAgOKgUmDhpMTH9/dPRcVoQ0GxZsl5/3dS2rah+aDdBR1o5ho2nvz5KcYYW/NjZ/Zs3tbSdgShv7bxL63YcuqW3UNY491bXk5sOtQ7FRBYD/sPNO3uvq5bC9PKZyifo283rqrLXac4rGnlFOFaAQ40cyuZVTu7x55ibKblVnbVnh5tHs/fufL9Hc9cna4gjtncnbT/Yj0eOffhya4zkoezx5pXM2uaj30m+bg4MpM/Y1e4qBdGTr4cQ4rhlnoC9ToCq7+rpYHdcS5VY/NbmfF+qevkIeH3iYa6hm3tYnfPNyOTRm6qz1BQjJc032+equLrq7d13tAXTFWM120+eUPHeGGq9+2VG45fnfaLnKcj0nvZSv9rG/8Sw7V29w8pyk8j4ynt/kzevKyuoN81iopPM9/tbXsh2/7zeaqKW1f8dtOO40PpqMp5eqtr+4q6da7vBNr5Cx61Z2hSMxN4aivVs2NdS++vGGNspW/ffOBYYz1Wzx07/Pl1EFkAADzPUCuwEkjRo74SEFh8Ay8l3b9z3t9aD4fOfHV92ngyfGzjxq5fbHn1VHnv5S2nfrl97q0jA4EeyLonbV/RKKoZbOiTk7qRvVuwTy2J6KUiXUGcq2E8z+fcUb9x8vdb0LduV6criAt2dT6ejJx8tW6jqBYlAYsoak3iY0gxjEzG8JeDrqDfbe6+HXKbOU3pEYU4wzAMw7A8kpSRIdSe1QSmpnwpClzu4yF16IQgXZL4GEOgQZAnc4/v/GqXlJrzPEj2h27DMDVFQjzrfJsT/vmlopnBL3u+b2NlZn6dyVj+Src0+cDOfaeuPjQsYmOwpnp3s6ube+7hhesnX/5Nc889bE1Ib/6h61be3JCPfOEyq8n/Oi7f9RikKyjhNO/c77ztP4A1f+vUlpW8+L+P7vX8ZRdx5jL3tW3izxPBGc+Jn765PKppmkftuXZacxltyB0tHBY2v2aLs6NC46q6hGdGbVa7eKTpvSuR8g4AAKCWqTqBZRmTNxVFUa50tax8FX19/uTOt8Qb186GCyxDQbF1f1P0yf62hDPanh8RN/Enb+jYeth/YEdwncV6pJwfDCzTPLPAsq88l5nN5axYT6YeOSks0QLLXseJrT/241P3yyvb+p+E3WTq4r7VDbt77xfXtYUX9Xxy8JwkSZIkChzLH/1QWL/+4Ndn93vKYaq/bX2w43dIj4pNLFPPo15VNzHGpjbUKcRdKWPqo508y7B8R5+axhhjU1M6BY6J8VLSmb1jvJU4l5L2Nvlu5MosrkPRs0VqpuXWmCCn7f9ofa0cy3Ctkn0LXe1DPMvU8+J1+7qmKsYZNi6OhqURuVXgZDtZ6YFDL61Hih5sDNMDp85d07Th7j37uoYnNO228lWvMnFvQkZNxy5P2Eu0pz44N/YUz9/8fM8bb/BZXuNidQzDMC/EYqu4Rt7DtgPSWFaZ6Qpa38D/yTfD9NeWxIrXu8YJS9WWPvzB5g37epMGxtiaGT7+5hZ0cSKYLGUZWt+B7Ue+Prt/1Ro+sP54VGhcVbdVVG0DMsnBryTpjCjEGe7t99H2l7Z9NDxtYKwPH0usaHz/Z8K0qH2HqatoW1P3zQJrlAAAADVKVQisBX3k+ytu2pOl31auXL3a076OeRX1XlEURVGVz0IF1sJU71uxtv4nuWs+vdW1+0037lsP//vOus3tX930jPJzi0GW/uvdmXlcLoGlSdsaEm7/+kYjt3rV9u6xeauwwLI7s5beKYyJX/aQHj62qY5h6jaK6pxRIA0a48iinpvRUpqmacNi4wttvXc1TXsw2X8kxksaTo+cPdyy7TVuFd81lt/H2wqJ5dCQT7iZo2J8q6hmcFoW2IA2whhnVHGrLXcMBcV8AisfXUGbtvKbAncxFNRgl4x5R2qq909xYYwnZaGBYRJImcEYY03iHUnnZUFPXrdXQK90taxMoN6BL9o27hJvPLaw8VAZupkJzGBZT/oPrOLRGSmcT9oSdexL+7/1L8TOahcPrl//54+Obmbe+ODrj/e/89nwNGGx1TKMJ6p0vGt4xm/mL1+9/z/KxEywGRh3L+5/fbt31spIXUJvrEnsE2XVzaBf0MfOowOfXH04aygolteY/H+0jJn7d7Xb/eh3TKM4rGma9kg3LOvB13vW7uoee4qt5FcHDnbnshs9pk9d3PebXdI9kFgAADyPUCuwGhIt7d60pzpfQrrdhb8hqnY6e8QS4ex417a4OGouDB97sak7mdGHP37nvT41uxhy9dS+ba9xsZUN/AcDyvnjCKGDzeteeudrzdFVq146eGlqwdOnFty9FY4m8bnVKK9OKiiwLEMbuebongiBtaAP/2PD6i3Nb/wmhhQjM/r54ZO9Y9GrNAWLOrtEiLExqw8eda1amFbOnR4cS96cCK5AmaNinGWYRlHNBD5Iyx0dyqQqNjLEqaO03NahGMUKLB4NjcqtcYapb5LumG6h2QLLVMU4w7DubFYWQ0Gx7N/JAssytB8vyAOKMnTx2Na6bMLZjRH1rvOg/qXDe717XgqpDsvQRkcm07dO7X+397Yvs8p4NPyZsGHL3y5pT9ylt8c3xOY1iX3iheGk7r1YUmre3NKelyOFEEJ/4tes2/P1Xc/Q4O7F/ZvW7f5YdrchKIqiDHyxf9vuvx17Z0Osrq5h89uHTn4xfP//aZottgwFxepyqt/R/omGusAjWRPStlUMd6BHnTIwxkay952d6OqUha2nynsvrXrzg6u/kkpgUhbWRswRAgAA1DDUCqzoxKCZwXaOYX77xrbXt6OvVP12uMB6PNieaO65h5/0t8Vauq/8zwenf7534+tT3Wc9MwwXBi4PXJtewNaTybv37va2veCmkGe7UkNBMXv4rp7fv/EtaSITZlkUvryZkgSWl9BOy5q+fGj9pgOXbv7gXs3Sr4nbt+47e500NWJTXA7WyjeReLTt0KeDPQdjsbXcmrVOl9zIxZjsXk7P9xmGCZ1ks/OfovSTT2CZd6RdJ/IupSuIR4qO9SHEsQzbJI6mcU5gZUI1nG0b2yqnzRCB5WKlenbU5yRFbveDv2r04e73/vXV9aHPdr7mW+NzCqdu1fYP5f994DF/fkb9+u87fv+Onc51f/Sb999YJVycxhjj2YdK125uJcOs4hr3fqA8cgcPL7oZ7in1q5PvSUNjuTz37d1JZyrWeHjlw31/+Wz4l2sXzkq9/V6JpSjKteTjp5oioQOo55rmEXBFzGBhjLH1oGfHCob53Y6WDS9v7x74tj2+gms+6OzMeOUdWQuZLJ1Pdm93Z14BAACeL6pTYD0daK+vY5hmaeJWz+61Lx47+zn/UnPPPYzzBNb8iLhxbaNwGLULzdteT7z4m+1nR6Yez1kPB774xs4jXnh44QTq/SU7DePtPn0CixNEV5GdG0wuZtlj8QJrQR8bHLxt74z8pWvjS04ymQdLvyZuf33/xbuG/2qWfk3ctnbdPkklH/oVXtRWZvr29X7puNC4po5t+uCHlJv33f3zVyc+Vp/au+Re2NHzwN+12rNEoWn4zscRO+Dcr2QhaDVXYLnpXPaCoyuw7Awtknjy3j1KYFnzqrixjmFe+8ux3a9sOPzdQwtb96TR7Dq9AAAgAElEQVTtK9/qzU5n6vduT4ad1mEZ0z+KO3cekn6Y8KgZa/LqaXQYffKN6hzA8VhBr9StPz7sORjEymjXev5x7ELK/ZlndhbPjne9zqw7PpzJyn+7GK2n6vkPT307Hn2um3ejX6A8Yhu8k2RHha3rXj+t5i5mPOhpWcEwDH/21vCJTft6byk9n19U1KR6sf2N7eI1ff5W945t/nV254eEvYcAAADPB9UosMx0/8FX2v/6p1izpBnW5PXv1Wtns98PzmB5jsWyVwlv/yS2faWZqZ49rdJEBuO0guKrd+cOOgoVWM/eT8wOtr9QusAyflW63t3nHjdlPejZsSK4+uZRV4SrWdPf7V/Drtr5b40wyRCR5K52bXmRa/mXLP+j0XtMAy9pD77a23pxypyQtm9sH5wJ/M5enmPiokpcGQpdQPQ/e5EzWBhjPJeSdrEMy7X2JYcKzWDZ6V/240QILGtCanr90NE/vMBL9+5J22MH+p9Y2Hp888dbumU8lve/wO1ub/ntig1//2E6X9M8Gf6gecO2YwNTrgh3fmgZ2rXLg7mppatfow0rftd29rJ/suny2baEfeIDxtgvsHQFcS+0D87miinbnEJOFQmmrv/ObSSuaXpy4CS/IrYZ9Qxk7Qoeb2aNdzftOXb0dYaXNLxg2J5iPb4h7tq4v08zMhNSy6o1f+oZe5wnmTOq2BixIQMAAKCGqUKBZU1Iu/7UMzGQ610MBcXcHVX5xzRkZrTxG1fkns+/QL9f2SxpD/rbXtsnT4x1vbF638WphVHxFd7dMOVegJc0bBmPfr0/cDRSYM1q8t93NLdLauQSWxZN4pmX+La/IoQQam9JxAoJrE9H1P+gLVv35zJ45u9JO1esfKvn1+zciWVM/yjuaRVzSTD5V1uY7j+45sVjw4QJjsgNm7Y2zeZg5cohPXxs19vtLS8TzwOzRYy9DEfAzjTPHrtAoNgcrOwXzJSdjLWV31QfmYPl+3uowJq1TzeYvmo/7JPxwUsD/V9/Lv5tf1vrn9uOnGjbym44qTzUDWzNj184HlQy7S2JWJ2zguYqG+bF7d035/Sbl79xdcylj5pXrRO6+53/fneSX9HQLMquyvlZdabHPAIrMHlpr1tndaoxlbydclMLLx/b8ELdenQp7wQG/zFblnGvZ/faTTy/5+TFK6662r+u7kUe9Y07X7SeKif+0HVjwjsXZT2+Ib61U/xx2ljQr/9rc/3vxRuEJHdsjXdvWbujJwVnNQAA8BxSdQJrIT34j1Zp3PAM301VjGfnS7ICa2H4o4/6lWMJJhZvbhd7BtXJ8TN8DCnGfLJ7e902aeIqisXQD2PdrzdJ97wvN1FQjD87oV187/jlh1ejZ7Du9TSvjko3CuBLcs+o0omPFXt5LV8S2Vn8DONLH7aMez276zehvh60qdk+Ltya/uHj4/9zw3eUJSkL3nr66BHxfPviz8HC2FMO1j1p+4r6kL7TmUAK7iLEpq6cFpUZZ4oruIsQY10RRUVfhMDC2EnGytaFvYswOE82o6BEoV2E1vzY2dbD/9Wy511Zj9Xzn5/rvz7+kHQompWZuf9gxncIAunYqgDW1FW0afU28erErzMZE2P9xsktq50tpQGSkrv8bU10b2F3dv1wQ7WzqBaGjyfe/vdE/jLl7L2et+vXHbyozWLr0fCFy2FLh5Z+Tdz5lnjjsfnw4rt7Prmhz+uqtG/9+h1d3umria9OnJ8wcot9ln7zK/Tucfl2xrIM7et9L72KrhIPql2Y7j/40oYPbzzLC60AAACqlioSWJZhLGA8pVz4cdryro88GTnJb5cmPCt8HFJ0/LCnBSnzj27/4ogPa1ZBv9nYNW4tTPW+tXJHz4OpodNf/HTr3++2yr4kIkNBsd9u2dZ0/Gp6odAS4YI+/lUbt66t/1FRj5W5e+2aRupu8iWR8fDSoXWrvRMDC/pYT9v6Tfsv3jWwlbnx4YYVvztwiXjYVfQ5DgEiitolX2AZdy8e+MP+T441r3ltv0TKoHf0TT2PJEWbw9g+6aqVdySXvahnnz5qn/w5pyldAn9M0U1XXEZNcWE8KQsJ/xecZKzsg7vnYAmd9i2cc7DirXLKVkMh52Blkso1LbvDjrQuXGi9uAiBhQ394e2RKxclEQn8K9zv4g11L7WcuurfP2gzN3N/KmNhbEz07F634eRw+uHPEmresPEP7WLP4Nh0/ntq5se6mza2X3T2nFqG1ndg2ztdSnCXn6VfO3Xg+IUJW3Yv6MP/2Ljmt79d8wa6lPJ/014TzB40eu/y6Z7hh7MYz08Pi9vXt3zy37OHd7TlXd8y7vXs2ZQ1AwAA4LmDBoGV/zY9RWxc39Z7y3e49FVx+0ZPvHYFljFxbs+uz3NDf0NBsbVtvbfuDR6LJ9DApGFpV77o7pEHv5faXll77Oc5jLExpT2axRhjK9XT+r7y1PAc/mTNKug3zqtOiDlYlqF9c/z4N5phYWzN3zrdtEuaWOy7YiztyhfdZyXpNOJffPnkdd88g5W+fduZGLAyqSunWjck3vZ0Y48V9EpI+nCEwCqpqDOGPjWTMa3xro1egfXaoY8O7z8+cM+wNd+6F2Lrmg9/PRbM+jc15ct/CpxzjDrDCaLsXUn1nfPOMHFBlFXdDJ6xTnwMeycg4QtzKWlXvfcPuipnD4tnWE4QZfvQ0eiT3LOFVaLAsvTktZFxTbvV2xYvJLBs5mfGBrr3v7Zm85FPPzu2O7GaqVu7DZ0bfhgQJZYxff3svo3rcy+uMTPJSyebX65jVm849oOnVBf0sZ7924/k3MTKzNzXJn74YPOKF7f5jnRfeHz7F+dVzcb02MBZtO13G94+IGx4ObH7793y8O3pwEDAn65u/Kp07du8U7z6cBbb21fXrd3WNeLOFi7o6rkDe45fAnUFAMBzDAUCy3o8cu6TrrOEAxrzyW3fMxQUaz6rKh+/8zf/KHlmWPzjulgdE+M27/tCzVgYG/q4jBpX1a07dOmBNni8xXfgzyqukX+Ni9XlNnNZv145/9ODW+cO7DsYzK7JcVwaSeP5O9+cvhCyO6/IZ89Mqt9/tu+VOlfSeT8zdE1V/tt9rHVHy+FPLlzTfOtQlqF91/nVLdJmRn8q9OKLekwblo7t3hBjmLpNXWMmdt5zzP3lQjK72mgZ09e/+qI/76DwWoB4hAHG1uzgoRfIAuvO4Fm0bQ3LMC+HT2rm5q7e5rds23dcGrjlnP9pTKmyKCRW55qikU4Oy5+hP27m2zzHhGav9GhY/P0qj4XOYQoudQ2JN/gdQvtRdLLr7MmWNcwrx4az6eZ265Klj/7Cr0vsQJ9dcg64ejTS+88/N66pc37etKfr+lOMcwLLmFJlsa3lXfGbW165lh78a+40sPm7yuU8awEAAJ4zKBBYi2P2+ud/O/PdNwMjRembBf3ubVug+Fe/6CCTGrk5lb8DKznYJ1+5kTeXUBBjcuSHa9rT8vRv1uSVjz9xpyKszO2fruQdLFqrmMnLZ3wywmZh+rL43te3wvZAWg9/PP9t/q8wxhg/HZE6Tnad/bK3XxkZf6CTJIiVmbh8+t/DuolxeqTn9Oe9399IpkNXe62n2i8pz730m/KXX/f/rCZ/nQlIXmty8J+fKmm77S/MDJ89dkzs7pGvjNwlmGFlpm9fv9wrnTr307Tzoalf6z03fD+tXjqvTJB+QjgDAgAA4HmmagUWAAAAAAAArYDAAgAAAAAAKDMgsAAAAAAAAMoMCCwAAAAAAIAyAwILAAAAAACgzIDAAgAAAAAAKDMgsAAAAAAAAMoMCCwAAAAAAIAyAwIrFIaBwgGAZQWcrkqBiqsBqq4S6TeYdvsqCP2VBwA1BjhdlQIVVwNUXSXSbzDt9lUQ+isPAGoMcLoqBSquBqi6SqTfYNrtqyD0Vx4A1BjgdFUKVFwNUHWVSL/BtNtXQeivPACoMcDpqhSouBqg6iqRfoNpt6+C0F95AFBjgNNVKVBxNUDVVSL9BtNuXwWhv/KA5cPStbszRqWtqHnA6cKw9F/vzsxX2opQoOKyUF5TEZSpEo1MJiJSLjx5NJWxsv+dm5lMLzqu0t/qaLevgtBfeUBpzN365vz1acMK+dgytMunz93QiZ9bU1fR6xv394xlwn4OlIGadjpr7ual8zcehXcns1r/2XMjj8kNMH0Fbdyyv+eXzJLZ9yzUWsU9Q6ygvKYieIZKtJ4Od3ecG9UtjK1ful5t7rr1NOSbv/a2cBvQwLRTdEmJf3mLeC3s29HQ3+pot6+C0F95QInoN06+sf7Atw8ta37s3IF9BxFqb0msWtX49lGU5cPecbKzW1O9u9lXjg0/yf1Ff3BfX1gu458LatzpMtdObnz1wKX7Fn46Jh3Z134U/bUlseI3jcLhXAM8fmF8ntivL0z1vs2+eGw41+IW9PsPyOOBZafmKu5ZYgXVNRXB4ivReiDve3kV/6/hmQWM9eFjgqiGyMu0LKzcKqrZcktKfAIpOsYY41nt8n8ua7PLYfByQbt9FYT+yqsqdAVxjA+WE0RZTZf7RmlV7kb8Wl5K5n9mTXRvYd/qncpGvl97W152v7lgeAas1szIBSmA2La5GX121v3vKcQ3rNrWeQM0VvmgzOnmNKVHFOJOe+WRpIwMoXZJW/SaxtxEdxPb0juV/cNUb8uKZueCvga4MDNyMdgAP9m/edvRz7L//ewov6phm3iNhp6bsooLx9SUL/8pcCzDMAxTzyNJUfuR8KWW98WiY0WV1VQEi61Ea14VN67IyiZrbvjEa+gHkvZcmOp9+4Xtn18fEPe320r1T3zD6kRLO0IIHW1r2cZve+fcGHmAUUaDlw/a7asg9FdetWGm5VaW4ZCiYzynDZ3gWYZhd0mpuXLeQxXjDMMwMaLAwlb69s0HBsbYmhq5cE6S/ilwDTw6LUnS2Y+E9euPDky78dTS7968rYWSSibvaZqmaY/00HUEoGRocrr0qNjEMvU86lV1E2NsakOdQpxhmr0Cy1BQA1JIgktXEO8OzXNY+sTN+7M4q+BFgWN5dEaSpC8+EjauP3TZXTrBlp66OZ4KbYB3k0n7H5M6DamBNFVcOPp1ka9nWB71qTrGGM9pSpfAsQwv5Qus4mNFddVUBIusROuBvG/9hpPXcnNW1oTU1HTyRrDxYyvVs2NDW/8jjLFlGAsYe2ewrCePH5cYS+lvdbTbV0Hor7yqw1BQzBFYGOO5lLSLZdi4OGqW9zaaxIcKLP3+fXsYufBk8p52u0dY+YY4fFfTtLu9bS/kxVlLT15T8rk6cPbAxu0wd1V+qHE6ezDAcmjI10uYo2J8q3f5o3SB5S4rW08m76Zu9+xb2SgOa5qm3epti+c12gU9eZ3QAJXLZ9te307TjAg1FRfBpCw0MEwCKTPev5qqGI+Lan4MKi1WVE1NRbCoSlyY7m9fv+2U6ktOteZvndoaP9Azlvb+1Rzr2lTXsLMnaWFDk/YkWv6Cjr7duGpVoqUdocNC40vrPAOMJTN4WaHdvgpCf+VVHX6BZf+XiZH7p2eAILCs+fELxxFCB5u51Tu7x5zZayvZvdm9vaGgGC9p2JzNzOV83NCUr87Lg1dJofNndbKEdAGgGGhxOnNUjLMM05iXSmKm5Y4Oj2wqWmA9He/9EKGjB5vXr97e7S6CzCe7t7sNUFdQgpeS2JrLzGZ7e8vQlK965EFS+1OUm5PUzJ7SUnHhOHPbBC01Kbed9FTh4mJF1dRUBKVXomXc69mzqf1ifuKU9UgR/8itenX/50MTzszdYwW9wjjx35odPOQXqW77X1qDlxva7asg9Fde1eEXWM4kQVwcNbTvO/h6JzWLe1fW5jxriHxHr9jaoRi5NRo7eaJX1TPOd+yMrtY+zQ6dxBksKzPz60xGk/gYujrp5FedQTzLCaL3358d5de39RZMtDRSV74drYpRaXVBi9NpEs8Upf2Ln8GyMjO/zuia1BxDVyadrJ3TiG/ghH96/v3hZ6hp/b6vtQL9sWVoyrch+w0rAi0VF4qhSc3FVWl5YwV1NRVBiZVoGVrfge1/+fQztFs4iNCRtpambS1tdmrVUaFx1eqWjz49uCFWx6x64/jVyfmJL3a99fe/ve4sCBoKirnl6bZ/cuJs+QyuALTbV0Hor7yqw1BQjKnnxes6NnVVEjiWYXdJqbQqNjJsq5w2cVoWWCaGFMMcFeObkDKD8Zwmv5tAiqEPIa7B+a3SwTENQt93YpxlBTnty+6KXCLUJD6GFENPXvt5JDRt4sFMxhnkWtMDx3fva0dBjra1bONbjg9OVkXcrCIocTp7bpWcmoNd+VUaduaWoUnNTgNURsbDsnbuz7jrLQvTgyd3CwfzGuCRtpYmfsf7g9O0LFJTUnHh2JtsQsICkdJiRdXUVAQlVaI1/cPHx3vUXJrEpCy8vLHrFwtjjK0n/QdW8pKGzUzy2jVtFlsPvnnvw4Hp29mMK0NBsQTqzU3y9Xe1cCCwniPor7yqw+m3stsI+Y6+3C5Ce/dfvTPKNBQUYzmhS9HsFHhDk5odERZAV+UziGcZpgSBhTHG5t2h/1y95Q2WE1elj7+56xvgWk8ePXpKUFHW05nH5czNB2wocbrw5aQgJeZguQILY4xn71755uqYt+e+ffXzT7/xz4hYT6YeZQhGLCIjeEmhpOLCyahiI1NSxmeJsaJaaiqCZ6rEhesnX34FKXY8NzSp2Tc+yWjj92e9Ke2GgmJO9qENMQdxKQ1eFmi3r4LQX3lVRyAHK4upfd/BN3DCP78clI7E7Gn8tCq1cjkdllIQlze/by8jxgWxZ1B6N1aKwLIMYzY4R31GFOLszp4HvmCYlJo3t7QfDQxLjwqNq186eGmqCkal1QUtTpeWBZYhC3o/ixVYlmE8VlDcXR+0+afArdnZk/I1QO1cc+KPeXOoh4XGNS/t/3aKmo6blooLxZ7kZlhBLvZgmFJjRZXUVATPUommKsbrDw86o1FDk5pJRe0XWLBE+DxDf+VVHWSBZY6KcZZtklKm842cjsoeWsPuFT9sCiQdm6oYZ+qbpDtm4MoFBNbRgeT3H773b3XgaMy3BuSdXciSlPiGvEvljc+AMkGN0zkTHsFdhNjUldOiZxvaogTW5eRA53vnfhwIZvV6D1100STefzCE+838ZllJqKm4cJyNC8FdhBjPKOJpRc9T0qXGiiqpqQieoRIfK2jTRnHEfUPQk+Fjr5DS3fwCC5Lcn2for7xqwx5ENgjypP/Po2KcZbgOxU1aZwU5bSgdzSeGtDnnNAe2tW/kiyaWYXn7jxjrivg2z9ldoKkNdfDZK5uqGA9ZC7CS3ZvrXliVOHzpoZHn4SCwKg9FTmfekZrqnbMo7SZnakpnK++XXCUKrPlk9/a62G8SB759aOX3KCCwlhYzJTWxzomx9oYYUxvqFHblSS6MFxErqqSmIlj0QaPGxOfb455DBPFUfxvn5mN58QusBr4tN9XX3pIouaDob3W021dB6K+8qsJ3krs/Ns1p8rucvRY4+P2ZpnqG5Tu+l/5Ph/R9B8/afx/STGzqai9yNxuy/Imh1LjcGrf/PTh02pZf30vvumle+ZNY1tPh4+vdrdd5WZZXetGrJIH1mwQ67990faUXvQoCaymgy+l8p34zDCeIspp3eGJJpIePveoe06Ar6BV/0zqPEq+QBNarqPeKvwWeR4nfUNVt01Vx4Zia8qUouJEo4mUSpceKKqmpCBZViZah9R3YsrfrxmMLL+hJVU1q2sS3aN1v2/qn8r5ccAbrdknvFKK/1dFuXwWhv/KA0pl9pE3ZYZEUNF/zvUAMYxBYy0ztO50xpT2y09iJAmuj92WXGFdNt12LFVdirKiSmoqg5Eq0niT7P2rb/8mgszPDMh7+LB3auoqpWxU8etQmKfHr/ojeRwj9tSWxIjiDtbrhjabGUt4pRH+ro92+CkJ/5QHPgjU5OjTuPWjYMh7dux/cB/R4pPc/SvCoG1Mf+a5v5CHlL76oRp4npzMmR4bHfS8DmH1090GwV9JHes8pecdiPR6Rvx2h6Zzb2q64omJFldRUBCVW4sK0cv6ckgq2WOuBcv7yOPktF5OD4qnBe5Pa3bATSjRNK+GdQvS3OtrtqyD0Vx4A1BjgdFUKVFwNUHWVSL/BtNtXQeivPACoMcDpqhSouBqg6iqRfoNpt6+C0F95AFBjgNNVKVBxNUDVVSL9BtNuXwWhv/IAoMYAp6tSoOJqgKqrRPoNpt2+CkJ/5QFAjQFOV6VAxdUAVVeJ9BtMu30VhP7KA4AaA5yuSoGKqwGqrhLpN3hZ7WMAAAAAAADKwXIKmEVAu31Elqdk6a88AKgxwOmqFKi4GmDRlVip2qe/1dFuH5HlKVb6Kw8AAAAAykLVdXn0G0y7fURAYAEAAABAGam6Lo9+g2m3jwgILAAAAAAoI1XX5dFvMO32EQGBBQAAAABlpOq6PPoNpt0+IiCwAAAAAKCMVF2XR7/BtNtHBAQWAAAAAJSRquvy6DeYdvuIgMACAAAAgDJSdV0e/QbTbh8REFgAAAAAUEaqrsuj32BK7JvTlPNnEM/yklbEt4soVlNXexG/V9IMbGrKl6cRv5aXkhhjjA1N2sujXlU3n/kuAAAUiakrHRzDcmhIL8/17khN9QzbKqcLODIAAMUQ2eXZXWo9wzAMExek0fJ48bNBfx9Nh32axNuns5dHYJn6aCcf4zuGNBMbmtTMMAzDxFyBhbE+Kglxlu8cjdRY9FceAFQPILAAgGqiujx9CPHtsjaHzZTcGmeY+ibpTsUdj/4+mh77khIfK4vAMlNSE5tAykzuT5rEewUWxthMya2J6FhPf+UBQO2gj0pCIy9ep2FkDADPIeFdnpmW/9mpZpz/pWWBLXY2ZEmhv4+mx75yCawZBSVYQU57/5YvsIg6rIS7AABQNkzt+w6+nmHtWWcAACpA0V1eCZ31kkJ/H02PfWUSWGlZYINaiiiwsDkqxtmgFCvyLgAAFE82B4CQBmDqqiRwLMO1SmqYL2bJrvi7xJBiLJnZAPA8UWyXZ46K8VhcHK34WIj+Ppoe+8ojsAwFxRgOKf51BqLAwrqCOCYuqiHNhP7KA4CqIt/H57ShEzzLsPyJIW0u+M0gAb/WFcSBwAKAclFkl2eqYpzrUArtElsG6O+j6bGvLALLTMutLNMsaf6gGyGwwpNk6a88AKgqgj5uqmKcYZh8hy0KEFgAUE6K6vLMO1JzizhacLJ5OaC/j6bHvjIKrEYxm45nAwILACpP8TNYxQACCwDKSRFd3oyCdrXKqcpPXmGMq6GPpsc+WCIEgNqG6OPEHCxYIgSA5aZQlzeXktrbqFFXuBr6aHrsS0p8LELueCmU5M4G8+80iWfy/oiTEh+DJHcAWC5CB1HuLsKmUpYeQGABQDmJ7PLmNBkJuVNU5jS5A8mTy2JXKPT30XTY591kVERCRuFjGpokV2b7tx15g3taFuCYBgBYcvK2/hHdvORzsEBgAUA5Ce/y0qrUygU8uLjZkCWF/j6advuIRBerqfW1colC68Sk47JKuQsAABVlUhYaQGABQLmoui6PfoNpt49IoWI19dFOng1/X5KpDXXwMXhVDgBUGUlJaOtUNNPx8fK9eAcAnnuqrsuj32Da7SNSRLF6XvYcBF72DABVipsRzzAMExc64dx3ACgbVdfl0W8w7fYRWZ5ipb/yAAAAAKAsVF2XR7/BtNtHBAQWAAAAAJSRquvy6DeYdvuIgMACAAAAgDJSdV0e/QbTbh8REFgAAAAAUEaqrsuj32Da7SMCAgsAAAAAykjVdXn0G0y7fURAYAFATQJOBwCVYtHeVym3pT9c0G4fkbxToQEAAAAAeL6otBgpAO32EVmeYqW/8gCgxgCnA4BKUXXeR7/BtNtHBAQWANQk4HQAUCmqzvvoN5h2+4iAwAKAmgScDgAqRdV5H/0G024fERBYAFCTgNMBQKWoOu+j32Da7SMCAgsAahJwOgCoFFXnffQbTLt9REBgAUBNAk4HAJWi6ryPfoNpt48ICCwAqEnA6QCgUlSd99FvMO32EQGBBQA1CTgdAFSKqvM++g2m3T4iRRSrqau9iN8raVNqXwfPMgzDMFyrpKYxNjRpL496Vd185rvUKJrEZ89xiyHFKPf1DQXFwi8cendTVzo4huXQkJ53NRcOKXqBv1cUQ0GxUGOSEh8LMXhGQQmGSSBl5tlvT1uZeHl+nS6fSrqhoUnNITcnu6GvZXl/UMkmpyuICy26iOLVhxDHMlyHUqiPKHz3pazAsrOs3qePSkKcYRiGYTlBKtgdE6E/XNBuH5FCxWrqo518jO8YSqWVY3xrn2ZiU+tr5ViG3SWl5uyqZfnO0chKpb/yng1TH+3k2WZJy3N8TeKZGC8ll+rOhQUW8e4hAst3VUIEj9Q0y01hgcVLGuGjkgWWqX3fwdeHdWlUlYmXWne6fOh0Q1tgkawq4IahmqYSTa6gwAop3pIF1pw2dIJnQ2RUdLijieXzPvOO1NouqWmM5zT5XY5h4+LoIhQW/eGCdvuIRBermZKaWLsrmpQ7ulWn3sy03MpmPcpMya2JsK66mLtUP+ExlFKBVcxVa1VglYKpKZ0Cx+1FQhwEFvXQ6YYRAiuamhBYpWBqQ51CghPaBY4FgbUokhJfDwKLIiKLdUZBCVaQ0/mf+D3Ko8MWcZcagM7IDgKrRIGVV1xmSmpuOjGkPdWkZhBY1EOnG4LAIpJfLHMpSWjq+F4zkxIfUpogsKJJy0Jsl5SaW8RP6Q8XtNtHJKpY07LAkt3GVMU40yiqGff/o2KcJUuxgnepBIaCYsxaQexGfD3DMAwTF6RRN1zNaUqXwLHuknaXos1lZ1/diTp7br+eF/+v7EkOIGQJEEOPHSaOSIOdgv1jlj8xpM1hjLGpKRJyEt2Yeje/zY5ue8XzgRw4f8TRr4t8PcPyqE/VI+7uTZgIkSAlCb0rWn4AACAASURBVCzfknFRJc8dkfo6naSBer7je83Me/TsU9gPKIjnnY9ySQYeY+y1IYblO/rsYiELLG82DKlhh/YTBgispeD5cMMQgVXYDZ9ZYJX8gBE14jUmPSo2sZ5fhTiONw8yX19G6E4QWIvA1FVZFBKLm77C1RAuqLHPzoUsbvgeUazhbpxRxa3+NUFdQRwTF9WQuqWt8txs0XirnDKdpBxbL2ZD9nU9m3zjPJcdVhJImTFTUhPLcq19mvO8JQ6d3dvb8c6+WlwcNX2bBrwL6m6OJ/eurM05aQ22VU7EGZpRJYFjcwE04u4OUXM8zyqwvJ2Hv7tzH93WVXMpaRfrlHxSamp2+iQzJbfGnRpxfmCXtpOzYgcR15iUKrVyHqFW8OlCiwUE1vLyfLhh9AxWREMtUmB5dUwWDil66Q8YUSOuMTOjkhBnWL5jyONtUXEm7PFBYJUTz/6H+ibpDiwR0kJ4sdqJVgQHMFNSc1Mgq11XEMewrXKaXLO0VZ6hoJgnGdATsCZlocGjFO1CcOfq7I6f2yXw9f68/kVF9lziZ0iQzUUTO7Jnpww9kdd+Eo5bG1QY4Xd3KJvAKgnH3qw6D7EwdyO7rLI14omw9j85riEY7gs9XfCmRDnoy7IFgbUkPB9uuNQCK5ySHzCiRuwIv5ZbmzeKwyUJLN+eyqAi9JYJCKySSatyN+LrF1dA9IcL2u0jUkhgedYBbfQhxLfLAQerSoGViwjB7jzC+Z3OuEGQJ73XW0xkJ0RVe5o3ntfN25E9e/28yM7v3cuxhL2clAosoklpVRbdJaG8UXjWzmBnUM8Lu7JTHUU+HcxgUcLz4YaVFlglPGB4jTgRfquwN86wTeKoPxkEZrDyqJD3ZVSxcVEJf1UQLmi3j0hEsRLc2LwjtaI8dYWrc4mQGEeSEh8LfRDzjtRUzzadPHMk4SwTuNcrT2RPywLL5AJ0cOgcGtljaGjGSULyB/dKCawCS4T5JtlqPqeTgn1tqMDikJJyMkJ8GgsEFnVOl8/z4YaVXiIs4QELCawYUmbsDDO/xgKBlUeFvM9My61seEccAf3hgnb7iEQVa1oWWM+hGmZKbmvL+ZWZktuOuVNWSYmPVVuSOzGO2FlBcaEzuObknJ/knP41hHxD1aA+yLGIyN4kpUyMdbUPZY+DKRjZFSOb/5tLSalcDlY40QKrSbpjOgfb1hc3g8UhRXdztuzEkcJPBwKLEp4PN6RvBiv0AYsQWIbr715pCwIrj4p4n6n1tXIJTxgsAfrDBe32EYks1hkFJVw/zJ4Vm8WjvdKyUFXHNITHEUxYq4ohxXA2zrj5g+4Jgdkwah+Y5J9vx7jUtQn3kD2GYZi4IJ4UOLboyI7d/F+PVYS7E3MggmFu2QUWxqY25O7NYjhBFAWueIGF3a1bOY1F7LdIY/3ovSCkqbhAfAeBtWieDzckKoli3HDplgjDHrAogZXdtJvTWAV3K7sVEnmUA7FM/I8JAiuftCy4XsLySFLyhiTFQX+4oN0+ItHFWpwiDj8uq7i71DJLfQDP0tx96XKwlosyHTRaBNSWyfPrdPlU0g1r4xysSJateEFgLRn0G0y7fUQKFas9WPGeTxP4XBvq4GPP+6tywgGBVRlAYD3HTpcPCKwlBQRWHlXnffQbTLt9RIoo1uzLnglL4vCy5wIs9Vtmy3t33+4t2l/2HEnEy57LBPVl8vw6XT6VdMOIlz2H/MDbsmh52XMkS1688LLnJYd+g2m3j8jyFCv9lQcANQY4HQBUiqrzPvoNpt0+IiCwAKAmAacDgEpRdd5Hv8G020cEBBYA1CTgdABQKarO++g3mHb7iIDAAoCaBJwOACpF1Xkf/QbTbh8REFgAUJOA0wFApag676PfYNrtIwICCwBqEnA6AKgUVed99BtMu31EGAAAAAAAnm8qLUYKQLt9RJanWOmvPACoMcDpAKBSVJ330W8w7fYRAYEFADUJOB0AVIqq8z76DabdPiIgsACgJgGnA4BKUXXeR7/BtNtHBAQWANQk4HQAUCmqzvvoN5h2+4iAwAKAmgScDgAqRdV5H/0G024fERBYAFCTgNMBQKWoOu+j32Da7SMCAgsAahJwOgCoFFXnffQbTLt9REBgAUBNAk4HAJWi6ryPfoNpt48IHQJLVxDHMM2SZoR8PoQ4luE6FN0sdKtCl1pSDAXFGIaXtJJ/OaOgBMMkkDJT3E1ivJQs7Q6axGdPlIshZVmLx9Ck5pCbm7rSwTEsh4Z07w8UFCP+wPcBhxTvj4h3XmyNLHmTK1+ZhFCyaxcsK8rccJGOgCtbuctAUuJjIT5CjDP2MxbytsKPsehKr2j0IzeG0DIpEvr1SgD6DabdPiJFFKupq72I3ytpU6rU6jQ6rlVS0xgbmrSXR71qoTgFAqsQ5Qoxpj7aybOkx9ckfnG9UQmkR8UmlvD4dn9DrBSymHDRFcQRw5uhoFhVCCz9usivJRV7+cskAAisUCpZueUj9O5JiY+F1GNknLELlNCyimxyFRdYi4p+0Y0htEwKsKx6RR+VhDjDMAzDcoJUsDsmAgJrSShUrKY+2snH+I6h20mpvVUa1TE2tb5WjmXiomo6VcvynaORlfqsAqsEqlRglXqTsBATHtmXQ2CFRfZF9zeVE1glENnkQou9/GUSoPwCqwToFlglsMyVWwqhd48QWJFUTGCVwHJHP/oFlnlHam2X1DTGc5r8LsewcXF0EQoLBNaSEF2sZkpqYvMHFoYmNTsCC2NspuTWRMhou6i7gMAq/SYgsEBgFfgeCKxyAAILg8CiWmD5SEp8PQgsiogs1hkFJVhBTgf/PikL8SbpTrYWQ3RYkXfBjmeyPOpGPOtdgsT+fAK/5+hqn/t1T8LB/fBLYVMb6nSmUhmGEzoVzczePfauNNglcCzDMAzLdwxp7tPZwwKGbZJSBZutoaCY9+a+CduQu3vTNQIhIK32dQSeMIaUjIJiTD2PRMTXMwzDMHFBGtX9SQOE7AFSiDEUFGPWCmK3/1KOuUqn4F4xLnQOaaYtpuOeyfwZBSUYtkm83udJ1vBWh32xkMDnTYwg9wflEVjkGiE+IMbhTc5eK6/PK19y6/XlrxDqo/xlEoBZlMAKab0Vd8Mwe/MdwbkHdZVrd9WCeL7o4OCsFWRXr/QhxLEs33ldPhJ5d6LAiogzfgufUWCVVumVjH5RrbpwmRSAqYheSctCbJeUmlvETytjcCnQbh+RqGJNywKb1yh1VRYFLjt9ZWOOinGWJMWKuAvGuYxC2yHtRXHfLfIDltu1j6ad1B+n1w+/lBueRnUTm9pQB88yjaKayf3EDujmHamp3nP3fIHly2D1ObMTd+3QadiZNM54IvTuLsEQYCfi1PPidd3JLXCSctzgbkcWO30he6nSxnDZS7XKKdN3KW/xzmlDJ3g2+yDXRb6e4ToUPZOSdrHOb20WN4MVMeAu0wwWoUbCHzDMZm8N5grBLNB6FznJsZgyCVByxIxovaE2L4MbenvBLBxS9HBHoLJys8Xb2qeZZnHBweP4doFw78qa230ubgYrYi6nPDNYJVV6mFXLEf2yjx3liVUjsExdlUUhsbjpKwwCa4mIKFZCH+YZuPlndHQFcUxAdRV3l9zPc36S7895PhBYzsj5T9ilzLTc6vPqtCw4Ydf+SXZW5hmm922rsuWQc86Iu7sEQ0Bgvj0XNO2Jhuxv/dW0CIFFulTQvElZaMg+l6n1tXIxbu9enrUjYJYKCqxAN+zeK6xGIh+QaLN/bcL7aWTrrTqBRWi94TZX1A0X13qJF1+Oyl1kcLAHePG9wlbWkYwuFRRY3nlWJtsAFlHpYVYtR/TLPnYNCCxPz1zvXVwqHhBYS0J4sdpekd/sTF399gziWV/3Zk8Ot8ppcs0WJ7Cy9ypCYBGGzt5xcP6lIuaQy5c6EOhvcs5ZaAYbFzWGs8NKIAvhmQUW4VLFrYAweTVO6wxWXo1kCjwgyeb8SQ6ns4xsvVUnsAitN8LmSrrhYlsv6UGWoXIXHxycwUNwiYDSGaySKj3MquWIftnHrgGBhTHGOK3K3YivX9y5IJUwuDRot49IeLHmDTu8n6liPH/AsfwCK0sgk4NwKfsKxMcpNbIXWiIkxNCIu7uQQ0yWXB7JMggsrEl8+G4UMyU1sfVNYtcRLsa19nnSZKpGYBmRD0i22V7ycGA5oUtxFmuee4G1tG4YvURYcuslP8gyVO4ig8NcStrFss3imXbOtxxfRQKL0uiXfexaEVgY44wqNi5usgAE1pIQUaxRfVhaFlivw5RlibAUgaVJPPmgoNBLmSmpifWGzrCfBCg5yZ3YRYXf3SUYApISHyOezhIZYmxZHFi5I14/8lJOwke2v/Rgj/WbpJTpHWXaTMpCAxNYyMCYRoEV8YBkm+3/EndyRLbetCywDOkck5oQWMvnhmH2lth6yQ+yLJW7mODguFiTdMefNRh9d9oEFqXRL3vJGhJYZlpuZcM74ghAYC0JUcWav1JuY5/LkDd18cxJ7qQoFljsZxh3s4l/6GyPcnLbSYgB0U4DjHt+Ynvmcgis8LuTBui8pAXHcEx221FkiAnsnypmF2HIpezdDN5yR4phr56w2Y0qdi3kBta+vUIFRpbEicDAd5ZMYIU9IA5vcr5JDvv57E1S0cODOU1xt8X56qP8ZRKAKaPAqrwbhtlbSuuNeJBlqNySg0NaH+3kWU/kcY7EzOa5h92dKLDC4kxegS6BwKIz+oW36mLKpABMJfSKqfW1cgnfNGfRVMTgkqDdPiKRxTqjoITr3pOy0OA2dR5J/rFhWhae6ZiGkjFVMe7L5gtsJ6l+7I2ZOVVnknZ1lcJynIMVRuXOwSobGVVs9ChLTNrrWhL0nYNVOrXihvRUblmo1DlY5YOe6Ee/wErLAhvaMxcPCKwlIbpYi1PEYcdlFXuX0smbCnZmVkKTwKqP4Py/nUHcIMiTi7wgCKxnIrD6aTqzC5HNPpIaEFg144b0VG5ZqH6BRU/0o19glQn6DabdPiKFitWONZ4T/IKfa0MdfOxZX5VTOqamSN7zDet51C2ri42HNDKnKZL35EOWR2dkdfGCgtKXPYf8wLsRzPsD3wfLKbDyWhzLozPfLu61XxjjcpZJCMsRMWvFDSteuWUl4mXPRHy7/EK9bVkfo+LRL7RMimQ5vK+s0G8w7fYRKaJYsy97zm9j5XrZMwAAZQacDgAqRdV5H/0G024fkeUpVvorDwBqDHA6AKgUVed99BtMu31EQGABQE0CTgcAlaLqvI9+g2m3jwgILACoScDpAKBSVJ330W8w7fYRAYEFADUJOB0AVIqq8z76DabdPiIgsACgJgGnA4BKUXXeR7/BtNtHhAEAAAAA4Pmm0mKkALTbR2R5ipX+ygMAAACAslB1XR79BtNuHxEQWAAAAABQRqquy6PfYNrtIwICCwAAAADKSNV1efQbTLt9REBgAQAAAEAZqbouj36DabePCAgsAAAAACgjVdfl0W8w7fYRAYEFAAAAAGWk6ro8+g2m3T4iILAAAAAAoIxUXZdHv8G020cEBBYAAAAAlJGq6/LoN5h2+4iAwAKA8mAoKMYwvKRV2pDi0BXEMUyzpBkhX5hRUIJhEkiZKXgtQ0ExJsZLyfKaCABVStV1efQbTLt9RIooVlNXexG/1xOIZxSUYHhJw4Ym7eVRr6qbz3wXAKhyyiywTH20k2cjBNAzAgILAJaKZe3y9FFJiDMMwzAsJ0gFu2Mi9PfRtNtHpFCxmvpoJx/jO4Y0t9LmNPldjnE7En1UEuIs3zkaWan0Vx4APCtlFliGJjVHCqBFkFal1rjjrQUFVgmAwAIAL8vX5Zl3pNZ2SU27XTMbF0cXobDo76Npt49IdLGaKamJ9Q1hzZTUFN/Kc2yuIzFTcmuCQ0P6Yu8CALUA5QLL1IY6eJap5zu+10wMAgsAlo4KdXlJia8HgUURkcU6o6AEK8jp7B/MO1LTVqQMS3zM25Hk67BS7gIAVYapDXU6c/IMk53NNRQUY1gedSOeDU7Xp9W+DvuvDMNygiiraez+JHZEGuwUOPsz/sSQNqUgLv9VrDGkGBhjPKcpXQLHupfqUrS58EvNORY7iwhxQRp1B0K6gjivuQzXKtlWOdrOua1PNulqn/t1Fw4puqGgGFPPIxHx9QzDeG/kKytO6FScuXBDQTGGOyL1uZ9mlR8AVD2V6fLSshDbJaXmCn8zD/r7aNrtIxJVrGlZYL3hdS4ltcTRkI6TAYGFzVExzvqkWPF3AYDqwhwV4yzDdSiBZXF7BsvRVYaudLjT9XMpaRfLxFvllImxqX3fwdczbKucNt2fOGLITElNbHaGnziDZepKB8fU8+J1PXupuKiaOOJS7h29C/3YncFydZU+hDjWuVQWTeJ9AmtGQQmGbRJH0xinR8Um1s3Qcm9u6yo7eatRVDP2ZZ0UAmcKrVFUM56f2LrKLiLnIwCodpa9yzN1VRaFxOKmr3A19NG020ckoljtISZSnBGvmZKam6WUiXG+wLKDdSA6F3cXAKgyzDtSUz3DCaKs+pbFbcmQ9QJ7SgkpRt7ww1TFuC1c7J/ktJrXs4gCa1IWGjyOZqblVkeXhF3KloOE9TtbYGU1ja4gLjtL5hAQWIE1UM+n9uRdNri7oSOdM88mLQuu7LN/kkstCIo5AKhilrnLc4crDMPUN0l3YImQFsKL1Y7dbnw370jNgjv3GCKw7EF5aXcBgCpEV2XRXoljOeGfX9rLXgH9kRVYmsQzfumSFRNRaVskgeWJo4FFuohLRc5gZa9fhMAizGB5p6Ny33QF1v2ItU5I2wJqmEp0eWlV7kZ8fdCLi4P+Ppp2+4gUElju6FOT+PxImZvfAoEFPI+4CUaeOaR8gWXP1QRnsBoEebJkgWWPbYhTxdEp9mE5WIsQWDnvDyRU5QusGU1qZkIW/kBgATVMhbq8jCo2Lm7nCv19NO32ESl+idADLBECgI0n3yhMYDnf8edg2Wt5UarIHuE46VYuTjqX0DkUzAcvuIcxu4vQuWDpAkuTeO+iXvDm+QJLt1PBcpn44T8BgFqiQl2emZZb2fCOOAL6+2ja7SNSKMmdeKhGvsBKSnwMktyB5wL/bC7LIyl6iRBjbGqKu7mPYep5JHm3/oWqIt+vsuInrcqiu4swuORW6JCIiHOwvAIrKfF5K5G8pAVmsBgmOyUWJrDc3FvPjkt3zAYCC6hhKtLlmVpfK5ewB3KlQn8fTbt9RCKLdUZBCbZJyquuPIGVlgU4pgEAahpTFeO+FFrP7B0AAB6Wr8tLy4I72soN9kqH/j6advuIRBdrcYo477isEu8CAAD15C1Z6tfF7HkTAAB4qLouj36DabePSKFitV+I5s2NDXyuDXXwMXhVDgDUPKamSN5jRut51O2cmAoAgIeq6/LoN5h2+4gUUaz5L3vOAi97BgAAAAAfVdfl0W8w7fYRWZ5ipb/yAAAAAKAsVF2XR7/BtNtHBAQWAAAAAJSRquvy6DeYdvuIgMACAAAAgDJSdV0e/QbTbh8REFgAAAAAUEaqrsuj32Da7SMCAgsAAAAAykjVdXn0G0y7fUSC5zUDAAAAAPCcUWkxUgDa7SOyPMVKf+UBQI0BTgcAlWLR3lcpt6U/XNBuHxEQWABQk4DTAUClqDrvo99g2u0jAgILAGoScDoAqBRV5330G0y7fURAYAFATQJOBwCVouq8j36DabePCAgsAKhJwOkAoFJUnffRbzDt9hEBgQUANQk4HQBUiqrzPvoNpt0+IiCwAKAmAacDgEpRdd5Hv8G020cEBBYA1CTgdABQKarO++g3mHb7iIDAAoCaBJwOACpF1Xkf/QbTbh+RIorV1NVexO+VNAPjjCo2uue+NgjyfU3ay6NeVTef+S5UYepKB8ewHBrSl+oWSYmPuSXJIWXJ7lPy3WcUlGCYBFJmPH/UFcRlD/yNIcVwPzAUFCN+QC/EBywrmsSHlYk+hDiW4ToUr8v4CrFsjaHanC6f59gNie2k+txwGWrQ0KTmkEcn3315ympZvU8flYQ4wzAMw3KCVLA7JkJ/uKDdPiKFitXURzv5GN8xpJkY47QsJETV5/KjkhBn+c7RyEqlv/L8LFdk5yVtqa6PMcZYvy7ya3kpWcrdI/WHoaAYMSjpCuJoiuwRLI/AipGKPazjdDAUFAOBlaM23NDURzt5tlnS8n0j/O6R7aR63HDZBBaxeKPvvrRltXzeZ96RWtslNY3xnCa/yzFsXBxdhMKiP1zQbh+R6GI1U1ITm+2KMqrYLMiT+V+SWxPRLkR/5S07yyKwQnv6xd69aiJ7RYkQWJGAwFp2lsENIxQAuOGzE1G80dSKwPKRlPh6EFgUEVmsMwpKsIKctv+XlgXWnleNC+IZSVaz/YBfh5V6l+cTEFi1CwisqgEEVrUDAstDWhZiu6TU3CJ+Sn+4oN0+IlHFmpYFNtBPmLr6rSSdRnw9wzSKasb986gYZ3NSrKS7FI8dVgTxPOJtpcfyJ4a0OfcT7ojU1+ksRdfzHd9rJsYYm9qQ+0eG4YRORTOxmZZbWabBMxuXUcVGht0lpeZ8CTS+2GfnotVnLyXaEtNe0s9+0xf75jSlS+DY7IK/pzCJsdX2+b3i+Q7nCblWSbUL1XsplhO6FG0OY2xqfa3epQR9CHEsy3del4/k8gwICQfEu3uzGUL0QUmR3UzJrXGGqW+S7hQcURkKijFrBbHbLeFsDdpXflcadB+fdResyWUyKQsNDNsqp9172o2zSUqZEQ+YVvvcMmdYThBlNZ193Ow3fQLI1JROgcsVrifEkwWWN+GG3B9UhcAKr6laccNgnPHmtRCbnLM0487i2ytT9bz4f2VPyhTBC8luWLidPLPAyoszWZ+yr3xEGnTbdjbG+ht8XOgc0kxn1O2N/KYqxm2XD61BjHW1z43hDBMXRFnVTTfDLPvIvmfxtR/fBUMEVsTdSyurRbJE3heOqauyKCQWN32FQWAtERHFGhHuTVWM++KUriCOifvTs4q7Swk42YlOvDNTUpPr227eoh3Q51LSLtbWf67gGNVNbGpDHbzv79m4EPgvxvmxz0xJTSzLtfZpJnYv1SDIkxGR3VTFeGgGQLjAYhiGe1fW5pw8jLiomtmQfV3H2NS+7+Dr3dK2MzxYDg3p5h2pqd75rc3iZrAiJmCeVWB5O48sHFJ0twbjgjSqY7sG7a7XLRO7D7CfMapM7L9nu+3Af4kPaN8u3iqnzOyl2FY5bYYLLHu3R8isbdQMVtSAu3oEFrGmasUNs3GmtU9zmpOd1xLhhulRsYllEkiZ8VmI8WJnsCInZop0Q6/I8Om7bJxpldQ0tn3KHpO4VWjrKvtZ4uKoaWcusk3iaBrjOW3oBO/7e3Y8E/gv6Rl9Ycq+lB3GwwWWOSrGwzLSomewIkq4pgSWJ3O/qAFtPiCwloTwYrXHlyEN1xwV4zGPWNYVxPn9qsi7lILdiHIyLndTQ0Exbwx1erjbabmV9c60pWXBiQv2WNk22Ax+DeM8z/R+P1sCLMNLWkRkt0OtOx3iJ0JgZS3JhoBJWWjwPHjAYHsAHd8rbGWdCOhSWYFVCnYN5lqU/f9c2M1KmWw8vR9aJr751EDRkR4wb/41O34IF1iOJnMH335qX2ARawrXiBsG4kzuUpFuaA8nuF0CX+/f9FM5gRVKIM7Y1/Po1JyUcS3MVZlNrihMVYxnBzDBrxGe0fd9jN2xSrOkzYQLLFuTubOVxRfUcyOwMMYYp1W5G/H1i3soEFhLQiGBFYh3WXQFxSsjsHLekhvxBDpC7PsCaQiHvbGA1AcHPTMp8YGQ5n4ham3CnraNuzPhPUp2bilKYOWFmIx3Y7Fv4sd3NYYJrtJWmcDy3DRXqoEy8f0gpEw8TZcQ8fMeUJP4wH5t9wtRS4Q4rcqis1rECeKXimaGXN9vd00ILGJN5X3kUG1uGHapqCaHMc7OGPmnS+kVWLmL5youGGN9RRJShdmKK0Yi28/lbeTZJw0XWBhjXZVFe4GS5YR/erwNBJaXrFot+alAYC0JEcUaFe7NUTG+1eNIy7hEmPOWSVlosD0kJLLbvhemEWcUlGDiojojC2xD3u7IgGfmKcjstEfAqrQssPlu66Zu5IqoFIFlJCU+Fl68cylpF8s2i2faOXedy4E6gRW9ROi5aa4YQwQWjiwTfQhxsbg4MiO3svm6P/CAnjkYm+wg22+V3X/keYSTm+KRcc+VwPI0+Bpxw1CtFtnkzDtSUz3bdPLMkYRvmZ7eJcLsxT0NO0RgYU3iQ/f/2yunjaKalIWGvEzc4DPmZsscsrOSab9VufDuu5mTjJVtTiCwvJhpuZUN74gjAIG1JEQVq2/0b+rqt864wdSGOprivpyGpMTHlifJ3fWWtCq1cu56c0hkz64OdHnGrJ5PVTHObDqCdrGE1f2AZ7pHqviSP+x1q0lZaLBDqpOWQTy+LpdQRby+86UQgeUuSHUOaUHPcfJCmqQ7/jwJjLGbgko4paxSOVih+GrQPjfPTnYOFVgRZYKdqB1vQ3vXEpJvgg9on4zlz8Gym0RaFpx8GidZhHQcpTdNh3h934PWlMDy1VStuGGowIpocrbr7ZJSc76EM4xd+eJkbkU+nc+I5ZrBMnVVEjh7F0j+INbFXaTrVEjeZmeMHDmyl7CXPO8ZnSO+vDlY9rKyXVDxVjllOjVLrELbW0FgETC1vlYu4RtjFw0IrCUhslhnFJRwHM9J9GGcBZHAWnhaFpbhmIbAPLXHjLDI7l8dyJvSt6OGb2TmOxfYxfZe314klkeSE2ucCMUwDMPEhc7TaGvMnlbzX6qeR9IilwgN7FuQyo1E7Qx3xq2jQPDCwf1TBXYRkqaXiBuslkpgZfFmzIQJrLAyyd5camIZ/8RJ+AP6dkh5a8rW8U5765TQVqf9+C/laQ0YhwgswnRC8DvVI7CINVUrbhi12khscnaGe7adgVyI+wAAIABJREFU+1UgDm44LbCLsIh2UiaBlcWTShgmsLB3kS7/QWzp6U2QjahB/5ZAr+/4TiQXJbTVuYe/TPzeRhRYUXcvsawWCbNseiV3fFIwDpXE8hm8WGi3j0h0sRaniP3HZZV+l2KJcP7qY1nOwSr73ZctB6uqqelzsGqqpp5TN4wYtFQdcA5WeaDfYNrtI1KoWO05EntLNvFzbaiDjy3Pq3JAYFX87iCwigEEVtXwfLohCCwMAisA/QbTbh+RIorV+7LnAMayvuy59gSWA01vmSWz5G+ZraluO+Jlz0R8hQgC6/+3d/Yukivpmo9/I2y56ZXXliw56VynnTZkpFNGGxfKEKQxcGAbBjYg4cKBhQFB0XCh4RBw4DDQFIhZY2BIroyF5pDImW2KRJelmSmEGIokCbSGlEp9hD5TmQqpnp/VXVWSXkXoeeNRxCvplrxNGc7PYPVVGwzWCfUDVj0+KbdpVvU7D4CZAdEBMBaTU5/6AasenxQYLABmCUQHwFhMTn3qB6x6fFJgsACYJRAdAGMxOfWpH7Dq8UmBwQJglkB0AIzF5NSnfsCqxycFBguAWQLRATAWk1Of+gHfND4CAAAAADAEtzQwPVA9Pim3aVb1Ow+AmQHRATAWvdU3lmzVTxeqxycFBguAWQLRATAWk1Of+gGrHp8UGCwAZglEB8BYTE596gesenxSYLAAmCUQHQBjMTn1qR+w6vFJgcECYJZAdACMxeTUp37AqscnBQYLgFkC0QEwFpNTn/oBqx6fFBgsAGYJRAfAWExOfeoHrHp8UmCwAJglEB0AYzE59akfsOrxSYHBAmCWQHQAjMXk1Kd+wCrEJ0LvKzMXhBBCDIvvwqYNWjRrvM8H7h8j4bu//icz35n8OYqiKDr6/MFkX71QXHwU0J7QZTrRmHtMf7BlOiX6xm3qiCaOPr9PX+ybPULlBi7TOm0AbgVEd2WuJ8Nnbqaq0pnbmMVDl+lQoVLUqq/zMH0D1E8XCsQXbpn5yfEPkdg7a4OQxYp/r9d6U7OKcPdoauZm64vz6KudDFYUhTtuGdR83NXmFPU7b1JcnNnDb/bZJWeJu/ie+6UULfztxqSV6bsUUneEv320jHiQoObmyQv67wtAdFfnejJ85qZGTO6XN6mX4dFlWjsVCt99tPST2NiTp8IYPyfq1Nd9mL4B6qeL0eMTgfOnR+81+V/gWJTIVZqhvlnFnq/okrkv5x/53MwarCiKxN5ZL3W2rZGo+p03KS52M+VOTJAarIPvfrb0pcUe9OsZrHDLdErNn7f+IQq/2eaC0I98f+i7OwDRXZvryVBqsFrIsK3BenHZktD4tjnY2Suqxhg/J6rV12eYvgHqpwvV4qu+DcpQ26wvLltSy8nNJMiSgsSHdTgK6MptDZb4zu8/bra+8Ll5LYMlAmdNyXv7lHeEZxuEGvYOSb83EN2Vua3BaiPDlgYrcCyaEZfY2QYlhu1BbMPRWn2thukboH66UCw+sbMNrXGIqmvWwLFoSf/SpCB2tkGLVqzlUUArDr7LT8v22VKLbLmGdOaJphuY/DlXMiWp2qheIoziru9gsIT/tNZpu4mo/ObhjsdrhQrknekC0V2B7jLMLsadftskw9pB92KDdXSZdi7tCjy+1iXZA1xEW/W1G6ZvgPrpQq34hGcbLaoBapo1r8MT8ruu0GV6zT2Q+p2nNiJ0N/q5HPKHY93l86jEGMWTQPKl225LhNmtLjRY2XEoRWfu76cRJTaFmm59snTcVV8ERDc0PWT46tnvCamY3e+2RJjdqo3Byj2wknFxf3s+BZlUPeoPzDJIZv4YXE5L9bUcpm+A+ulCpfjEd37/7/auuUy4dql4TctjbY3BomsnkF8o6nee2jxzU8u4jbKbkRmsPV9Rqlu2U64Wv4nB6sIzNzXygf2yMWlSGlI4ZdAZiG5oesjwsOcfKTEs25E8an1dg1VFHGQstoW5+asv4p/AYA1JK/W1HqZvgPrpQp34Xlz2ce3s24xNTQarpDoYrNtTzJutDFYUidBz7OS5PMOyf3P900yScgYrfs6c6tbnJMi4LgRLhBcA0Q1MTxkGnmMnK/W6Zf/q+mmOHMdgnV6toluPSSzxNBuWCIekhfo6DNM3QP10oUh8hz3/9IfW3YYlwglQcBviO18tWmT2lFMxVtpBoxmsqiXCIHDWlNxZzo/kFPd8RVHkfhEQ3cBcKMOkGCtzVY+zROgeA8ei5FwyG58IZosHpUl93YbpG6B+ulAhvoPvMMv+Fp7/u2GnQUtKXbMWHjaJ8bkpebzrmZsaityvxqtnvyd0Ze+CcwF4B4N1ekNPmkPjDCt5e9lYRe7pO4R+cvxDco5qlCZMF4huaC6UYVzClUmelTK87gxW8poGYqydvUiK3OueAQc9qFVf52H6BqifLkaPL30eJEPTfUlts764bElX/GSz87dEWf0HjoXXNFyVNKGThcl+c+xVkkd9bpbuUU3+XLp/XZiMn5cICw8YNjxFKJt2Kmbxiw1W7kWjmbVC0BeIbng6yzCvHWoynlkirJSh1GC1kGG/F42e1wrBYFSrr88wfQPUTxeqxyelvlmF/7TWl03rxLLXZXU5ClCGppmwSgZ4kzsYFohusvR9N1J7gwWuzOTUp37AqscnpalZRbh7NGn195KEv92YGj6VMxNgsOYDRDdZYLAmz+TUp37AqscnpUWzZj72XAQfe54Z+NjzfIDoJgs+9jx5Jqc+9QNWPT4pt2lW9TsPgJkB0QEwFpNTn/oBqx6fFBgsAGYJRAfAWExOfeoHrHp8UmCwAJglEB0AYzE59akfsOrxSYHBAmCWQHQAjMXk1Kd+wKrHJwUGC4BZAtEBMBaTU5/6AasenxQYLABmCUQHwFj0Vt9YslU/Xagen5Tiq4EBAAAA8MYY24w0oHp8Um7TrOp3HgAAADAIkxvy1A9Y9fikwGABAAAAAzK5IU/9gFWPTwoMFgAAADAgkxvy1A9Y9fikwGABAAAAAzK5IU/9gFWPTwoMFgAAADAgkxvy1A9Y9fikwGABAAAAAzK5IU/9gFWPTwoMFgAAADAgkxvy1A9Y9fikwGABAAAAAzK5IU/9gFWPT0qLZhWh95WZD9z/h/e0MSkhhBB9zb0gio4+fzDZVy8UFx8FzJLQZTrRmHtMf7BlOiX6xm26Zpo4+vw+fUVe9giVG7hM67RBT15ctiRkydyXxj89ukwjmsmfux3B52bdiRz2/CMld5bz4/ST0GV6/1OPozxv1eEE6/fbtQdrEaG70QnV2Ta8LKzOzZu7sHTmpse/rNnBlLnpkBfuuGUQQgihusUbh2Mp6o/RqscnpalZRbh7NDVzs90H7n+Y6ydfRMJ/WuuU0I98f4i7lpqPu9pOVb/zwHW42GCF32zzncyCxMPzPfe7DlulkAZmKIMlwt2jSWUn6HOzzpaVDVb+eLc2WMHOXlGT+6X99u1BKV0N1vDNe3SZljNYuV/AYL0pbjfkie98/Yl7QRQdfOcnnVDD3vVwWOqP0arHJ6W+WcWer2icSX84my9e0m8icNY0zUFi76yX9XlN/c4D1+FiN1M52ilrsDpQa7CqT7DBATQdT3LqIvS4Zdzbu6DLVi155qZGrm6wujJ888JggZSRhrxnbi5gsBSitllfXLakliNJuvkclPFhPY4CZsxUDNY4g70aBuvgb382KaHmz1v/0Hqr9sBgwWC9OcYZ8gLH0j7yvUzFTag/Rqsen5S6Zg0ci8oTjfBsg7y3vdfT/3e2QeVWrPEoYG4cfJczc0GK5SfP3ExrVQoD28F3P1s6TTcw+XOuskVSySIbIMXeWRuZ1asXly0JXeUnZtoYrHiOthBk6DKdGLYnIuFvH5OiB0J069H1xXkn51PIbBuc6xczp/LqMo0sTGafmsuw+C7M1+5ITl3qALKVQ8VioPQsyyN94PG1Xi7dEL7LWTZgjbnHuhPMtwkhxOS+vAvTwKQWJ+6dB/vPp+ai5mbrJ5GF3tM5KMOynSTm7LlnnNzRZRp5Z9lfbtO8MFgghdx6yBOh59jWst/0VTSFMVqZ+OK8JrlllFDTrJX5Inr17A/5NcHz2NP1KGBexKUw8UgWRdEPx7rLjy2SYVV4tlFVPdN1Biv8ZpsLom/c8HXPP1JirJ19/qpsNYMlu/ifualRywnCLdNpUnco/O3GpNmbDUnMcZssTPtbmJT+JCd7ciBxc8W1Temu+k+xtB3pk+AX5uavfq6NXly2PD3IEt9o5RusHIDY2UZVaV2nGayT+4mPLr7z1YLQtROI5N/6T45/OM+65W7qigdKm3ft7MX1mxcGC6TceMjL3MssVvw7lghVobpZpTfxURRFYs/vV4Wq9tBlepIHux0FzIxnbmoZq112MzKDtecrSnXLdrzSHGj3JULhP611TX94MGnsaQpkQ8o9yJabn+C2GRcyB45FqWHvhNjZhmbYv//TWeccVfoHlTHHpiEN9ewDji7TMkWp+RH62gbr1bPfF6Z8MvvPnFHZH0gMVux+LNvxSkftYbDOzXt0mUbuLOeH8GwjV1oex5/dXGqwbte8MFggZYwhL/CcL8xc9LvU1B+jVY9PSpPByt+aR1EUbpn5ySnWasBggSiKymNJK4N1mt82Tks/v7npBdanButkm+QXZLsarKPLNGrYv784a0oIMWzvxbHoneX8vWGBSRKzZAYrHvULNVi3NViVM1jFzdsYrCiKQs+xLZ0QQqhu/elXN91lD4NVmErUTP53n9/nF+bKm0sN1u2aFwYLpIw05JXvOtqi/hitenxSui0Riu98zUruKsISIUiIl4rSQS6e2Gg2WCmnYqz0Wuoxg7XnK7pY2Z//qGv6+skvXpMti9yfualp7Lev1tLivzL9g+18Nsl72wt9fk/KNx5Z5AYrxbAek6qikQ1WFElrsIRnG8VHWFoYrPRsk2KstIkuMVjxbZ7O3DCdyjr95atnv897aBgsoAojDXkicNa0eiCuQf0xWvX4pNQ1a2HtQ+ydP/zhXC8s9s4f/uOU3U7lKT2OAmZFPOyt7F1wfv1dB4N1elFWmiMCx6JE9qK1qhqsLdMpXfG9yM4b5f6incEKXaaTd7qurZ3gX5794Z3+jtK1E4jTguZnV/rMXVQeoZ+5qUnrk2odQOwtZKucQxqsKPMU4amR42dWzMddeAw9Hj980N5gRcVqpx+OdVd61CBqYbBEfHS64nuRvkEtW4NVqNvrZLCGb14YLJAyypAn/Ke1vixVnbZC/TFa9fik1Dbri8uWp+yWvis2JeO9AsfCaxpAzPlSWZjsN8deJWNL8TkscnoSrVAItTAZz3iX/AOG9U8RxhXuNH1QOR7pC3XuLd8ckUQV3zYIzzbihUIR5Rc0TzVbbph/TPKEyf3iDBZJX7hc6wCiSPjuo5Vu2PCYWzb0ziN94T1YIvVVhJrs6attahpzj5UnWOxcajJ+XiIsPGDY4inCM5lHBQv7OR9DWkh3z/3jjZsXBgukkJsNeYFj0ZImunO7gPuienxS6pu1nSOufl1Wu6MA0J3pvGg0nhCKb1SiKH3neO8HqpscwHlZrfgbtUb6VjVYI9C3eWGwQMrkhjz1A1Y9PilNzRrX5KZP3Zd/7283poZP5YBbMx2DVVzlDHb2Sv4pm5ZIHMDR5z8lpV3nF1WUJKnWSD8hg9WqeWGwQMrkhjz1A1Y9PiktmjX92LP0cS187BmMgrIfey5TfPMqNdkvktcZtEb6NeLcB18L9WFqfnVY2oOKGKwuzYuPPYMSkxvy1A9Y9fik3KZZ1e88AAAAYBAmN+SpH7Dq8UmBwQIAAAAGZHJDnvoBqx6fFBgsAAAAYEAmN+SpH7Dq8UmBwQIAAAAGZHJDnvoBqx6fFBgsAAAAYEAmN+SpH7Dq8UmBwQIAAAAGZHJDnvoBqx6fFAIAAACAt83YZqQB1eOTcptmVb/zAJgZEB0AYzE59akfsOrxSYHBAmCWQHQAjMXk1Kd+wKrHJwUGC4BZAtEBMBaTU5/6AasenxQYLABmCUQHwFhMTn3qB6x6fFJgsACYJRAdAGMxOfWpH7Dq8UmBwQJglkB0AIzF5NSnfsCqxycFBguAWQLRATAWk1Of+gGrHp8UGCwAZglEB8BYTE596gesenxSYLCmSrhlOiX6xg1Fuw1E6G50QnW2DVv9/dHn9+k76DTmHhs3cJnWaQNwTSC669NVU1EUvbhsSciSuS/t/v6Zm6mqdOY2HwcyVIHJqU/9gFWPT0qLZhWh95WZD9z/h8fXeqL0NfeCKDr6/MFkX72mMV79zpsegxmsYGevqMn94t/HBuue+10zdOgy/cLMLvzto2XE1xo1N09e0H9fbxWI7voMaLCqZPjMTY1Ift5IexkefPezpVNCCCGLNvkcNHJT9YU7nmRLqlu8X/epny5Uj09KU7OKcPdoauZm+3+f+ac134VRJPyntU6JYXsi6VpqPu5qO1X9znvDVGXw8QxWuGU6pebPW/8Qhd9sc0HoR74/9N3dGwWimxRVMry2wYo94sLc/NUXItw9mpTQFd/DYl3G7dQnvvP1J+4FUXTwnZ90Qg1716P31E8Xqscnpb5ZxZ6vaPlm6+jz+8RgRVEk9s56WX8Pp37nvWFUM1gicNaUvLe91+T/nm30zRpvGYhuUoxlsH441t05mUevnv2eZNQH+jGS+p65uYDBUojaZn1x2ZJaTml55odjGSv+Pe3FCh/W8iigTGwy7iznx+knr579/jSRky3LyBsg4buPln7+fOfptz4305+lyTpXrJGS1nnIDJbYO2sjs8Dx4rIloSt7l71GZJk92XCRvWwqyG+ezn73GWPeNBDdxdTKUKqpZDupDLNFjZrJn5M/bpChzGD1lmGZo8u09K9E6HFLp7nwQC/GUV/gWFrPyX7104Xq8Umpa9bAsWhJaaHn2JZ+vuOJoiiKxM42qMyKtTgKkBIvk6VNWvhvFMkMUHz3WeN0pXfDHWew4jU7feOGr3v+kRJj7RTWE1oarKxNzI4rv5/iiUtDNN36ZKVL0qA1EN0ANMuwLJ8mGfrclDiYjjNYXWWYtYMpGnOfT8EkptCw2EPvZSaQcnP1idBzbGvZu+PUTxeqxyelplmPLtMKz61kbrby6/Shy/SaIVD9zlOP+F557QSivGoWRZHMAB3iVGvZTkWd4xAGKynC0/SHB5MuTPtbaWn4wiXCZ25q5AP7ZWNSam62voh/AoPVEYhuCBplWJZPkwwHMVhDydDnJtE+sMeNuUiqHn1uwmBdzI3VlxmZ26wSSFA/Xagen5TqZo2zSXl8FaH3l1+YSXPeK3SZfkpDnY4Cqgkci8aZrlAnESM1QIHn2MkDQbpl/+r6uU2GMVjnxQ55j19osEKX6YRQ3frs+ocoSuZHsUTYFYhuGBpkKJVPrQwHMljDyDAZmQ3rcRsHKTzbwBLhxYyhvsBzvjBz0S/3qp8uVI9PSpPBklc7lkQIg3UNXly2JIbtvTgWzRaCxNQWoScT/oU70YFmsPZ8RRcr+/MfdU1fP/nFPm9psKqWCINC4YvY8xXFLXVnILqBqJdhbRG6VIZDzWB1kmHVEuHxh2PdZVJ3PP2GIvdLGUl98fJ0jyeTJpAuVI9PSrclwpTAsWhWhFgivArCsw3yb39kH6nkfVf1T/klb+hpYbDiDFuokK3ef1yGsuJ7cXrAu7g8cWGRe/qKr58c/5AUuXd43RdIgOiGolaG9U/5yWQoN1hVMqyqweolw+oI9fWTL+Iid63La72AnJHUJwJnTXtVU6ifLlSPT0pTkbts5iB+L0PunumZmxqK3IdHfOerBZEk6OKtqMmfi3NC1GQ8XpvIvZP9xNk5Zd/q2fAUYfGtVPFbEwsFthcbrFxImbVC0AWIbjAkMqzRVJUMZVO2GedUIUOZweotQznZF42e1wrBJYyiPuE/rfVl6XGHVqifLlSPT0pts764bHkqZv/hWHellHEicCy8pmFujPkmd3A5EN0suMGb3MHw3E59gWPRypG5PeqnC9Xjk1LfrO0ccdXrstoeBSgJDNa0gehmAQzWJJmc+tQPWPX4pDQ1a/zxBMPiO/mqvPC3G1PDp3JmCD72PG0gulmAjz1PksmpT/2AVY9PSotmTT/2LH1cHx97BkBFIDoAxmJy6lM/YNXjk3KbZlW/8wCYGRAdAGMxOfWpH7Dq8UmBwQJglkB0AIzF5NSnfsCqxycFBguAWQLRATAWk1Of+gGrHp8UGCwAZglEB8BYTE596gesenxSYLAAmCUQHQBjMTn1qR+w6vFJKb5ZGAAAAABvjLHNSAOqxyflNs2qfucBMDMgOgDGYnLqUz9g1eOTAoMFwCyB6AAYi8mpT/2AVY9PCgwWALMEogNgLCanPvUDVj0+KTBYAMwSiA6AsZic+tQPWPX4pMBgATBLIDoAxmJy6lM/YNXjkwKDBcAsgegAGIvJqU/9gFWPTwoMFgCzBKIDYCwmpz71A1Y9PikwWADMEogOgLGYnPrUD1j1+KQob7BCl+lEY+4x/cmLy5aELJn7cllQR5/fp+9Yyx2hagOXaZ026EmHEzy6TCOayZ+7HcHnZu2JiD1fUUItJ0h+ELpM73/qcZTnrUTobnRCdbYNu8Vd3G/XHqxlqKgam/ew5x8pubOcH8kPcheWztzz8S+55PqIrthTURRumU6JvnFD0XlvOZ65qUnPsYLLLrn2dDjBOKR77neKpfEq7XA9XMS1ZNicT7qgoAz7XIrq+5UC6gesenxSWjSrCL2vzHzIpJUXly2Jyf3o6PMHk331mnLTqAYr2NkranK/+PM48XVNl9KQhmU4gxV+s813kt/63Ky1ZSWDlT/erQ2WCHePJi33VO8erDjKMFE1Nm8ps584ukyTD6h9LrlxDFbVJRcbLIkMu4c0LIMZrN55psf10ItLZVh1gs35pAsKy7DLpXhTvxLuuGUQQgihusUbh2MpMFhXoalZRbh7NDVzs/VPnXbwnZ90QpJcGe64ZVDzcVfbqYMarK5UZXZlDVYHGgxWVYrpnRCHMVidj1rRU8MarKGi6t+8KhqsrlSeu6oGqwP1BmvwPHNtg9WV6h4c0mB15YYyVNNgie98/Yl7wWlopoa96+GwYLCuQn2zij1f0dxUitjzlfHB1OlZaWLvrJf1NxxvwGCNM9jDYMFgVTFrg9V3bxcBgwWDpZ7ByvHMzQUMlkLUNuuLy5a5dSLxna8+MPf/FJRW9mFdjlLm4LucmYt02ft0UWerGQrKOfjuZ0unud/m1tTLi+syZYq9szYyy3MvLlsSurJ32bWyNgZLBM6aFmUfukwnhu2JSPjbx2RSlxDdenTjCcKaE4wXahe5U9HY3/7GNLIwmX36lWHxXRhVnHoaszz1ZKtkKqoN2qcY4bucmbS0t2xhRD5Z59ok+W2u+qEUmDy3Hl2mkXeW/eXUJgtz89dkAjb0ns5BGZbtJNPpFVGVdhU3b31UFc2bPQQh0tqacQxWVU/lroeCTHz30co0wT33jw2XnGx4Fv7TOrs8F26ZTovT4a0M1g/HuiuO/UeXafHdfDY5UN367PqH806kJ5i7TtL++m+X6YSa7Mvpd/qae0GfPBNdeD20ZhAZNpyg/IKfoQzVN1iBY2kf+f7QY9NxAu6C6vFJqWvWwLFo9gI97Pm/G2wblnOl2NkGlZTstDlKkXgNPjEKSeosXNQl5QjPNiqX7TveWYbfbHNB9I0bvu75R0qMtbPP3xC0msGSqfSZmxq1nCA7kAh/uzEpeW97rzUnmBt7zhGKU+qLmysu3srsqvcMVlUqyf08V72bT3AvLlsmw08UX0iFvckvoYpSmG4zWPk2yVRaiO98tSD6T45/iKKDv/3ZLNaZFaNKd7V29qLYvP1vnasy+BgGq7Gnyqf56tnvK2sEu81gxQU0VGfbMNc7GVoZLFn7+Nwkd5bz/0J3o5OFaX8Lo0j4f92Yi/gmp/oEs7dVwc5e0eRkTyN63Fxx8dZ5V/1nsNpdD8X7n5M/eLmVDLvNYM1QhkobLBF6jm0t+01fRTBYV6KmWQvXmdjz+3u+F5FMaee5ma5HKfHMTS2zq6rUmTdYe76iVLdsxyt7vM6JT/hPa13THx5MmuTlPNmQ5CaDEJ1x24wTSuBYlBr2ToidbWiG/fs/nXXOUaV/UH2C+aXAc+RHl2mZRfdiariuwarG52a2FECyVTmzx2nXsh2vnNi6G6zi0anl/NOzjVxNa2wUsptLM3tV887CYDX3VPk048EyM/FQ3GGnJcK4cMR4sD7Q4lRxOSSpySBE+8S/3BO6doJjcBKX8GyDvLe9Z8e6y+QTERTUVz7BeDxPQz2fUWyw0m0LnXJtg9WdgWXYw2DNS4YKG6zMJONixb9jiVAVqps1v8glvvN76zT3WGGw6NoJ5D3bofOKF3Erg3Xy7/HMtmHZv7nn++Aeie9km+Rn1K4GK1mh+P3FWVNCiGF7L45F7yzn7w0z29ITLM9gGbYnijVYihisYhhtMnsURaHn2PHCE9WtP/3qps9V9DBYmbNLxssv/8Xv8ysC5c2lmb2qeedgsFr0lPQ0A8+xk0U33bIzXdWrBiuxTfIp8HY1WEeXaamdIifd0bXzj23D8larGazYVBVqsFQ3WEPLsIfBmpcMFTZYURRFUeA5X5i56FdnB4N1FZoM1ul2rbh0XchTwxmseI76XEH/na9KV0ydck71FhdM3Ys9X9HFyv78R13T109+8ZxaFrk/c1PT2G9fraXFf2X6B9v5bJL3thf6/J4U1gQLVBisU7Of60hGNViVS4QHzzYy+49f+tCc2U+cqkAaVwHaGazTysiry7TyrXPuolU1s1/NYInmnqr1B0kxVmaiovsM1p5/pPTe/uWTLlmOb2uwIp+bRGdP3NIs/sR04385v9wTw/ZEYUa8TIXBOie5tERyXIPVeYlwaBleZrBmIEPVDVYkmw5sCwzWVahp1up0f9UlwlhvK3uN4PXKAAAMsUlEQVQXnF/v0cFgRaXaiB+OdVcqVI8qlRnPFa34Xohs9Ub2L9oZrNBlOnmn69raCf7l2R/e6e8oXTuBOC1ofnb9imrE4gnGO5dUvTQYrMCxKJG8ROPaS4RxTZ75uAuPocfjqY72mT0qllnEXr/cES0MVnwJ0Y98fzi98Shb/FGo2+uU2auimpLBatFT9f4geWvR2WBVXXJVNVjuRk8WNaQPlLQ2WEeXafSd/k6znEDsbOOdrmvUcoJ0QfNxW7pTqjhBn5vygs56g9UxzxRP8QpLhAPLsOoEWxisechwAgZLBM6a1t1OVAKDdRXqmrVcG5RQluWpfLvHUcqcX5u2MNlvjr06XdSye7jkfafZe7iFyXjWu+Sfi6m99YlX32j6IEacYgo31i1HuySquFmEZxuEnGxfdkEzG1XVCRZmsOIt1twLGgxW4eHKhqcIs7FfZrAikSZ0Qk329NU2NY25R/mk1z33j4UpUmoynll3Kjy21uIpwvOespV5uSvhfIzKqBqaVx7VpAxWZU9JJ63jk8pfpcWuqrjkJEkjrnAndMUTdeWG3lyjtDj1OKp4aiS+j09zV2ZBMxtV5QnmZ7AIyT+2VmWwuuSZPNcyWEPLsOIE64vckz3NQYbKGyzhP631pWQauAWjBNwJ1eOTUtusLy5bntPfmVKuDBxryNc03IYJvWg0ntXLPH9bnKXrSKPBkjxwFEVRtxRzfdotEd6ehuaN77kVMVg3YzIvGhWebeQqhUsP53ajMc/0uB4Uo80S4e0ZXIZqGqzAsU73DsWbnS4oli4kqB6flPpmbeeIS6/L6niUkZiQwSpMzp9u/WvbvA75G2J+tZJVy+yj6XlgsNogad6jz39KVqkyb9kobAeDJeHWl1xpySmZ1a4sMG1CepVeeD0oxmQM1mXNrqbBGgj1A1Y9PilNzRqP5elbqcq/97cbU7vip3Kuh7Ife5ZQfF8gNdkvf+n3zakoqvoMauDxdTLTfi7sjbnVl3e7Ie9BNTJ7Kazc98Ly5Xe5C2vUjz1fEVU/9lymKLaFyb7I3v/Skoo80+t6UBTZBT8jGeJjz0qgenxSWjRr+WPPKTf42DMAoA8QHQBjMTn1qR+w6vFJuU2zqt95AMwMiA6AsZic+tQPWPX4pMBgATBLIDoAxmJy6lM/YNXjkwKDBcAsgegAGIvJqU/9gFWPTwoMFgCzBKIDYCwmpz71A1Y9PikwWADMEogOgLGYnPrUD1j1+KQQAAAAALxtxjYjDagen5TbNKv6nQfAzIDoABiL3uobS7bqpwvV45MCgwXALIHoABiLyalP/YBVj08KDBYAswSiA2AsJqc+9QNWPT4pMFgAzBKIDoCxmJz61A9Y9fikwGABMEsgOgDGYnLqUz9g1eOTAoMFwCyB6AAYi8mpT/2AVY9PCgwWALMEogNgLCanPvUDVj0+KTBYAMwSiA6AsZic+tQPWPX4pMBg3RARuhudUJ1tw7abvLhsSciSuS/t/v6Zm9rpvXE6c1sfZ5ijV3H0+X36OjuNucfC78V3vloQunYCkWzgMq1uA9AMRJdhatILt0ynRN+4obhoP03SE3u+ooRaTpBuUCW93C8uzy0zZ3LqUz9g1eOT0qJZReh9ZeYD949R9OrZ708au7Oc//b5g8m+ek1ZQP3OuwkDZvlgZ6+oyf3i3z9zUyOSn/ej6xhTFVWc5e+5X2GUSgbrROgy/XKDJfy/bszFWxsVILoMw0kv/Gab70z+XPr7QaXX1WBVRtUgvbLBSvdYJb2jy7TWUnqb0oturL5wxy2DEEII1S3eOBxLUT9dqB6flKZmFeHu0dTMzdYXURQFjrW0vWz3hTtuGdR83NV2qvqdNzWqsvmwBqsrVUdvMliVXGywhO8+Wrr+wCzjrWV5iO4q+Nwk2tUNVlcqoxpeem0N1huWXnRL9YnvfP2Je0EUHXznJ51Qw971cFjqpwvV45NS36xiz1c0vYd79ex7y/lR/iNnvay/NVS/86YGDFYrxJ7fr37e+v/y+f1by/IQ3VWAwWpnsN6y9KLR1PfMzQUMlkLUNuuLy5bn2ePAsWi8OGhY9i/c8VLF5H1Y16PMBhE4a0ruMh701bPfE/qR7w+Rz820gKGQheNbvfS3STbMFk9kUmeuEqJcEiHN8nGufLD/vDHjHqSnKcko8J5OPyRUt2zHi3u74ujlXelr7gVNUUmzfK46RF4hIs3yYu+sDUIWK/69dR45vsEs/zZEF9NTesLfPiZrK9nfyi9++TV+vjhl0ju6TCOaZf+Zpcr7eesfoiiqll62lisrGbn0mqKSSi97iArlDbRE+DalF42lvsCxtI98f+ixqfrpQvX4pNQ1a+BYtHBXJELvL5z/JzMXhLy3vdfTj3e2QWUL+S2OMifCLdMz7VD4bxTJsnBc1lZtT+X3pp1msEKX6WczdC54et3zj5QYa2cv0mqJQiFU8ejprn5y/ENSKWKkq8a9Z7CqsnlLg1UcMPL2LnqbWf6tiC6mh/TEzjZq65yk0us0g5XYn6QyJlPwdGiSXlkytdLrPYMVW8D+BgvSk3Nz9YnQc2xr2W/6KppCulA9Pik1zVpzpyI82yiPu0a+PKvdUeZFfN8cJ8r4rjpjQ6NIloWTVGvZjrw4cTCDdY7k6DKN3FlP/7tgi0vdWmWw0l0VsvBNDFYf3mKWfzOii+kuvfhOQ7fszGR8jqEM1jkxhi7TCV07//y9SXpVBqtCeqMZrEbeovSim6svM5HZaWr/jPrpQvX4pFQ3a5ykKpQpdrahZczyKXEUnwJrPMrsCByLxmWGPxzrrmQ6pRYk8Bzb0ikhhOiW/avrZzcZzGCduzJOqub//B9mYXWgfCy5wUp3BYOlLm9IdDE9pBd6jh2vzlPd+lNBeYMZrPMPT/L5ry9N0qsyWBXSg8FSjDHUF3jOF2Yu+iVM9dOF6vFJaTJYhbvAlNBlBgyWjBeXLYlhey+ORe9KzwTUVsImxVj5x0CGN1hxz+rsbw7TSOk2Oh/zNAwW1ikkvCXRxfSX3qkYK5/uhjdYPxzrjmjMfXWbpDcVgwXpyRlJfXHBSY9nGiaQLlSPT0q/JcJI7GzjQyYZYYnwjPBsg/zbH9lHKinvqH/UKHlbTwuD9cOx7ghd2btC2VujwRKhxy2d0hXfi/hNP/lCkELM3QxWVVTXrsFq5C1m+TclupgLpBdroYXBChyLEtmLaRoNVuDxtZ5ct43S62iwKqPCDNY4jKQ+EThrWj0Q16B+ulA9PilNRe7pYC9C7y/JFLrwt5uVkXsvwzM3NRS5J8S1HTmfVHpijpBT1svfAlKT8biVZbeGmfSdfwCqxVOEZzL1XrkHGBcm427yiFPV0esNVlVU4xms7BNkJ97Im+HfluhiOkkvf22cldcgvYPvfk4W9HMXU02ReyqITL1XlfQkV2xs8uqlVxXVeAbrDUsvGkl9wn9a68vYtXdF/XShenxSapv1xWVLuuJ7EZ1eYlZKEzGBY+E1DUrQqgbr5jQarNPSybVqsN4iEN1tabNEeHuapBc4Fr3qDNYb5XbqO78+KXuT0Bn104Xq8Umpb9Z2jjj/uqzuRwHDMSGD9cytPzy6voi/FkClnzGBweoPRHdbpmOw/F8t67PrH5JvW8nfEQODdRGTU5/6Aasen5SmZo0HP8PiO7mehL/dmBo+laMK0i/OKmKwCssESTUYIYQQw3rcZu+88LHny4HobotMeqoYrIKS4mqwZDniMT/ngY89D8Lk1Kd+wKrHJ6VFs2Y/9lzgiI89A6AmEB0AYzE59akfsOrxSblNs6rfeQDMDIgOgLGYnPrUD1j1+KTAYAEwSyA6AMZicupTP2DV45MCgwXALIHoABiLyalP/YBVj08KDBYAswSiA2AsJqc+9QNWPT4pMFgAzBKIDoCxmJz61A/4pvERAAAAAIAhuKWB6YHq8Um5TbOq33kAzAyIDoCx6K2+sWSrfrpQPT4AAAAAgMkBgwUAAAAAMDAwWAAAAAAAAwODBQAAAAAwMDBYAAAAAAADA4MFAAAAADAwMFgAAAAAAAMDgwUAAAAAMDAwWAAAAAAAAwODBQAAAAAwMDBYAAAAAAADA4MFAAAAADAwMFgAAAAAAAMDgwUAAAAAMDAwWAAAAAAAAwODBQAAAAAwMDBYAAAAAAADA4MFAAAAADAwMFgAAAAAAAMDgwUAAAAAMDAwWAAAAAAAAwODBQAAAAAwMDBYAAAAAAADA4MFAAAAADAwMFgAAAAAAAMDgwUAAAAAMDAwWAAAAAAAAwODBQAAAAAwMDBYAAAAAAADA4MFAAAAADAwMFgAAAAAAAMDgwUAAAAAMDAwWAAAAAAAA/P/Ac0Gg2SUf76eAAAAAElFTkSuQmCC" alt="" />
完善程序
1. (交朋友)根据社会学研究表明,人们都喜欢找和自己身高相近的人做朋友。
现在有n 名身高两两不相同的同学依次走入教室,调查人员想预测每个人在
走入教室的瞬间最想和已经进入教室的哪个人做朋友。当有两名同学和这名
同学的身高差一样时,这名同学会更想和高的那个人做朋友。比如一名身高
为1.80 米的同学进入教室时,有一名身高为1.79 米的同学和一名身高为1.81
米的同学在教室里,那么这名身高为1.80 米的同学会更想和身高为1.81 米
的同学做朋友。对于第一个走入教室的同学我们不做预测。
由于我们知道所有人的身高和走进教室的次序,所以我们可以采用离线
的做法来解决这样的问题,我们用排序加链表的方式帮助每一个人找到在他
之前进入教室的并且和他身高最相近的人。(第一空2 分,其余3 分)
2. (交通中断)有一个小国家,国家内有n 座城市和m 条双向的道路,每条道
路连接着两座不同的城市。其中1 号城市为国家的首都。由于地震频繁可能
导致某一个城市与外界交通全部中断。这个国家的首脑想知道,如果只有第
i(i>1)个城市因地震而导致交通中断时,首都到多少个城市的最短路径长度会
发生改变。如果因为无法通过第i 个城市而导致从首都出发无法到达某个城
市,也认为到达该城市的最短路径长度改变。
对于每一个城市i,假定只有第i 个城市与外界交通中断,输出有多少个
城市会因此导致到首都的最短路径长度改变。
我们采用邻接表的方式存储图的信息,其中head[x]表示顶点x 的第一条
边的编号,next[i]表示第i 条边的下一条边的编号,point[i]表示第i 条边的终
点,weight[i]表示第i 条边的长度。(第一空2 分,其余3 分)
第一题。答案在上面。第一空是快排条件,第二空、第三空和第五空照抄即可(上面有差不多的),第四孔就是判断应该选高的还是矮的。
第二题。答案在上面。第一空是spfa的d[1]=0,第二空是松弛,判断是否可以更新,第三空是取消访问标记,第四空是判断是否走得这条路径(我没写上来),第五空是标记访问。
NOIP2016初赛总结(提高组)的更多相关文章
- NOIP2018初赛总结(提高组)(试题+答案+简要解析)
NOIP2018初赛总结(提高组) 更新完毕(纯手敲),如果有错误请在下面留言 单选题 T1.下列四个不同进制的数中,与其它三项数值上不相等的是 A.\((269)_{16}\) B.\((617)_ ...
- NOIP2018初赛题解 提高组
- NOIP2016提高组初赛(C++语言)试题 个人的胡乱分析 Part 2.
洛谷秋令营day1模拟赛原地爆炸,心态崩了.于是打算写一下初赛题放松一下. 上次胡乱分析到了选择题,这次我想说说后面的题. 问题求解 T1.有一个1x8的方格图形,黑白两色填涂每个方格,两个黑格并不能 ...
- NOIP2018提高组初赛准备
NOIP2017提高组初赛错题 一.单项选择题(共15 题,每题1.5 分,共计22.5 分:每题有且仅有一个正确选项) 4. 2017年10月1日是星期日,1949年10月1日是( ). A. 星期 ...
- NOIP2016提高组解题报告
NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合
- NOIP初赛知识点大全-普及+提高组
NOIP初赛知识点大全-普及+提高组 https://mp.weixin.qq.com/s/vSXLDxmbBoFfZPzD8lrt3w
- NOIP2018提高组初赛知识点
(传说,在神秘的初赛中,选手们经常互相爆零以示友好……) 历年真题:ti.luogu.com.cn 以下标题中打*的是我认为的重点内容 一.关于计算机 (一)计算机组成 硬件组成: 1. 控制器(C ...
- 【题解】NOIP2016提高组 复赛
[题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问 ...
- NOIP提高组初赛难题总结
NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...
随机推荐
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
- lumen 登陆 注册 demo
本文将用Lumen来实现一个完整的用户注册.登录及获取用户信息的API. Lumen环境搭建和初始化详细步骤请参考上篇文章<Lumen安装配置使用入门>一文. 一.准备工作 1.Lumen ...
- 一、Spring——IoC
IOC概述 Spring中IOC的概念,控制反转概念其实包含两个层面的意思,"控制"是接口实现类的选择控制权:而"反转"是指这种选择控制权从调用者转移到外部第三 ...
- try-catch(C# 参考)
https://msdn.microsoft.com/zh-cn/library/0yd65esw.aspx Try-catch 语句包含一个后接一个或多个 catch 子句的 try 块,这些子句指 ...
- mysql按照中文名称排序
mysql按照中文名称排序 Sql代码 www.2cto.com /* Navicat MySQL Data Transfer Source Server : ...
- Cordova从服务器更新客户端的JS文件
思路: 1.主要使用 Cordova的File插件 2.获取需要替换的js文件安装后的路径 3.软件使用js发起ajax请求,后台返回版本号跟客户端版本号对比 4.如果发现需要更新js文件,则用js调 ...
- .netGDI+(转)
架上图片了你就可以在画板上涂改了啊我要写多几个字上去 string str = "Baidu"; //写什么字? Font font = Font("宋体",3 ...
- [DFNews] 入侵汽车控制刹车和油门?——速度与激情6 的节奏?
原文跳转: http://arstechnica.com/security/2013/07/disabling-a-cars-brakes-and-speed-by-hacking-its-compu ...
- android C++环境搭建
http://jingyan.baidu.com/article/3ea51489e7a9bd52e61bbac7.html
- set JAVA_HOME in RHEL/CentOS
3.3. Install OpenJDK on Red Hat Enterprise Linux Introduction OpenJDK is one of many Java Developmen ...