public static void main(String[] args) {
SparkConf sparkConf = new SparkConf()
.setAppName("Regression")
.setMaster("local[2]");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaRDD<String> data = sc.textFile("/home/yurnom/lpsa.txt");
JavaRDD<LabeledPoint> parsedData = data.map(line -> {
String[] parts = line.split(",");
double[] ds = Arrays.stream(parts[1].split(" "))
.mapToDouble(Double::parseDouble)
.toArray();
return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(ds));
}).cache(); int numIterations = 100; //迭代次数
LinearRegressionModel model = LinearRegressionWithSGD.train(parsedData.rdd(), numIterations);
RidgeRegressionModel model1 = RidgeRegressionWithSGD.train(parsedData.rdd(), numIterations);
LassoModel model2 = LassoWithSGD.train(parsedData.rdd(), numIterations); print(parsedData, model);
print(parsedData, model1);
print(parsedData, model2); //预测一条新数据方法
double[] d = new double[]{1.0, 1.0, 2.0, 1.0, 3.0, -1.0, 1.0, -2.0};
Vector v = Vectors.dense(d);
System.out.println(model.predict(v));
System.out.println(model1.predict(v));
System.out.println(model2.predict(v));
} public static void print(JavaRDD<LabeledPoint> parsedData, GeneralizedLinearModel model) {
JavaPairRDD<Double, Double> valuesAndPreds = parsedData.mapToPair(point -> {
double prediction = model.predict(point.features()); //用模型预测训练数据
return new Tuple2<>(point.label(), prediction);
}); Double MSE = valuesAndPreds.mapToDouble((Tuple2<Double, Double> t) -> Math.pow(t._1() - t._2(), 2)).mean(); //计算预测值与实际值差值的平方值的均值
System.out.println(model.getClass().getName() + " training Mean Squared Error = " + MSE);
} 运行结果 LinearRegressionModel training Mean Squared Error = 6.206807793307759
RidgeRegressionModel training Mean Squared Error = 6.416002077543526
LassoModel training Mean Squared Error = 6.972349839013683
Prediction of linear: 0.805390219777772
Prediction of ridge: 1.0907608111865237
Prediction of lasso: 0.18652645118913225

测试数据:

-0.4307829,-1.63735562648104 -2.00621178480549 -1.86242597251066 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
-0.1625189,-1.98898046126935 -0.722008756122123 -0.787896192088153 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
-0.1625189,-1.57881887548545 -2.1887840293994 1.36116336875686 -1.02470580167082 -0.522940888712441 -0.863171185425945 0.342627053981254 -0.155348103855541

参考:
http://blog.selfup.cn/747.html

spark mllib 之线性回归的更多相关文章

  1. Spark MLlib之线性回归源代码分析

    1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...

  2. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  3. Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成

    不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作

  4. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

  5. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  6. Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...

  7. Spark MLlib知识点学习整理

    MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的 ...

  8. 推荐系统那点事 —— 基于Spark MLlib的特征选择

    在机器学习中,一般都会按照下面几个步骤:特征提取.数据预处理.特征选择.模型训练.检验优化.那么特征的选择就很关键了,一般模型最后效果的好坏往往都是跟特征的选择有关系的,因为模型本身的参数并没有太多优 ...

  9. Spark Mllib框架1

    1. 概述 1.1 功能 MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具有如下功能: ML算法:常用的学习算法,包括分类.回归.聚 ...

随机推荐

  1. 开发Android 范的错误

    1 在onCreate(Bundle savedInstanceState)方法中, 按钮单击事件的实现直接写在onCreate方法了里,这样就好导致这个按钮只能触发一次, 因为在Android体系中 ...

  2. HDU 1166 敌兵布阵 线段树

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  3. SQL Server 2000 ——系统表和系统视图

    一.系统表 数据字典的详细信息请查SQL SERVER BOL,这里仅列出一部分. 1.1.sysservers 1.查看所有本地服务器及链接服务器 select * from master..sys ...

  4. vi-11

    vi编辑器linux命令大全 作者:xiaoru  出处:本站整理  发布时间:2013-04-29 13:20:23 -     vi就是linux命令行下的最著名的编辑器之一,Vim常被称作“程序 ...

  5. LCS(打印全路径) POJ 2264 Advanced Fruits

    题目传送门 题意:两个字符串结合起来,公共的字符只输出一次 分析:LCS,记录每个字符的路径 代码: /* LCS(记录路径)模板题: 用递归打印路径:) */ #include <cstdio ...

  6. Log4Net 配置StmpAppender

    目录 Log4Net 配置StmpAppender    1 1.前言    1 2.详细配置    1 1.StmpAppender配置    1 2.Root 配置    2 3.更多选项     ...

  7. List<T>的使用

    定义:List<T>类表示可通过索引访问的对象的强类型列表,提供用于对列表进行搜索.排序和操作的方法. 作用:泛型最常见的用途是泛型集合我们在创建列表类时,列表项的数据类型可能是int,s ...

  8. Gradle dsl method not found renderscriptSupportMode()

    连接: How to use the Renderscript Support Library with Gradle Android-Studio and Renderscript support ...

  9. 洛谷 P1908 逆序对 Label:归并排序||树状数组 不懂

    题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定 ...

  10. 看看 JDK 8 给我们带来什么(转)

    世界正在缓慢而稳步的改变.这次改变给我们带来了一个新模样的JDK7,java社区也在一直期盼着在JDK8,也许是JDK9中出现一些其他的改进.JDK8的改进目标是填补JDK7实现中的一些空白——部分计 ...