public static void main(String[] args) {
SparkConf sparkConf = new SparkConf()
.setAppName("Regression")
.setMaster("local[2]");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaRDD<String> data = sc.textFile("/home/yurnom/lpsa.txt");
JavaRDD<LabeledPoint> parsedData = data.map(line -> {
String[] parts = line.split(",");
double[] ds = Arrays.stream(parts[1].split(" "))
.mapToDouble(Double::parseDouble)
.toArray();
return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(ds));
}).cache(); int numIterations = 100; //迭代次数
LinearRegressionModel model = LinearRegressionWithSGD.train(parsedData.rdd(), numIterations);
RidgeRegressionModel model1 = RidgeRegressionWithSGD.train(parsedData.rdd(), numIterations);
LassoModel model2 = LassoWithSGD.train(parsedData.rdd(), numIterations); print(parsedData, model);
print(parsedData, model1);
print(parsedData, model2); //预测一条新数据方法
double[] d = new double[]{1.0, 1.0, 2.0, 1.0, 3.0, -1.0, 1.0, -2.0};
Vector v = Vectors.dense(d);
System.out.println(model.predict(v));
System.out.println(model1.predict(v));
System.out.println(model2.predict(v));
} public static void print(JavaRDD<LabeledPoint> parsedData, GeneralizedLinearModel model) {
JavaPairRDD<Double, Double> valuesAndPreds = parsedData.mapToPair(point -> {
double prediction = model.predict(point.features()); //用模型预测训练数据
return new Tuple2<>(point.label(), prediction);
}); Double MSE = valuesAndPreds.mapToDouble((Tuple2<Double, Double> t) -> Math.pow(t._1() - t._2(), 2)).mean(); //计算预测值与实际值差值的平方值的均值
System.out.println(model.getClass().getName() + " training Mean Squared Error = " + MSE);
} 运行结果 LinearRegressionModel training Mean Squared Error = 6.206807793307759
RidgeRegressionModel training Mean Squared Error = 6.416002077543526
LassoModel training Mean Squared Error = 6.972349839013683
Prediction of linear: 0.805390219777772
Prediction of ridge: 1.0907608111865237
Prediction of lasso: 0.18652645118913225

测试数据:

-0.4307829,-1.63735562648104 -2.00621178480549 -1.86242597251066 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
-0.1625189,-1.98898046126935 -0.722008756122123 -0.787896192088153 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
-0.1625189,-1.57881887548545 -2.1887840293994 1.36116336875686 -1.02470580167082 -0.522940888712441 -0.863171185425945 0.342627053981254 -0.155348103855541

参考:
http://blog.selfup.cn/747.html

spark mllib 之线性回归的更多相关文章

  1. Spark MLlib之线性回归源代码分析

    1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...

  2. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  3. Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成

    不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作

  4. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

  5. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  6. Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...

  7. Spark MLlib知识点学习整理

    MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的 ...

  8. 推荐系统那点事 —— 基于Spark MLlib的特征选择

    在机器学习中,一般都会按照下面几个步骤:特征提取.数据预处理.特征选择.模型训练.检验优化.那么特征的选择就很关键了,一般模型最后效果的好坏往往都是跟特征的选择有关系的,因为模型本身的参数并没有太多优 ...

  9. Spark Mllib框架1

    1. 概述 1.1 功能 MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具有如下功能: ML算法:常用的学习算法,包括分类.回归.聚 ...

随机推荐

  1. HDU 5682/BestCoder Round #83 1003 zxa and leaf 二分+树

    zxa and leaf Problem Description zxa have an unrooted tree with n nodes, including (n−1) undirected ...

  2. android 自定义弹出框AlertDialog ,很炫的哦

      于是就小小的模仿了下自己写了这个这样的效果,主要代码如下:dlg = new AlertDialog.Builder(context).create();dlg.show();dlg.getWin ...

  3. CDH中flume是已经启动着了…

    文章来自:http://www.cnblogs.com/hark0623/p/4174646.html   转发请注明 在CDH中用了几天flume后才发现,原来CDH中的flume默认是启动的……… ...

  4. SU supef命令学习

  5. Unity制作游戏中的场景

    Unity制作游戏中的场景 1.2.3  场景 在Unity中,场景(Scene)就是游戏开发者制作游戏时,所使用的游戏场景.它是一个三维空间,对应的三维坐标轴分别是X轴.Y轴和Z轴本文选自Unity ...

  6. D FFF团的怒火

    Time Limit:1000MS  Memory Limit:65535K 题型: 编程题   语言: 无限制 描述 在信软学院,男女比例失衡已经是习以为常的事情. 在这样的一个学院,诞生了一个神秘 ...

  7. ural 1155. Troubleduons

    1155. Troubleduons Time limit: 0.5 secondMemory limit: 64 MB Archangel of the Science is reporting:“ ...

  8. A Walk Through the Forest[HDU1142]

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  9. BZOJ3217 : ALOEXT

    替罪羊树套Trie,Trie合并用线段树合并,注意常数优化. 顺便AC800题纪念~~~ #include<cstdio> #include<cmath> #include&l ...

  10. Robotium Table控件的处理

    HTML代码: <html> <head> <title>Table</title> </head> <body> <ta ...