期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的。。

题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点。求走到n或超出n期望掷色子次数

SOL:

期望DP还是显然的,从后往前推也是显然的——这个题目能比较好地理解为什么要从后往前推。概率DP每个状态都在当前已知的概率下推出——最基本事件的概率往往都是已知的,而期望不同,从头开始,头的期望步数是根本不可知的,一旦遇上不可行状态极难处理,而从后往前推,最后一个状态的期望一般均为0,而它是由在它之前的状态转移而来,那么前面状态就可以更新了——

——例如本题,E[i]表示从第i个格子到第n个格子的期望步数,那么dp[n]显然等于0,而对于第i个点,它下一步可能的方向是i+1~6,那么根据概率的那什么公式累加已推出的点乘上概率——因为转移是要掷色子的所以还要再加上一。

然而对于直接相连的两个点怎么考虑呢,对于相对位置靠前的那个点——它只能到下一个点,那么它的期望直接就传过来了。。连加一都不需要...所以期望&概率题需要考虑清楚状态之间的关系——保证DP的正确。

code:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cstring>
#define ll long long
double dp[100005];
int vis[100005]; int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
if((n+m)==0)break;
memset(vis,-1,sizeof(vis));
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
vis[a]=b;
}
memset(dp,0,sizeof(dp));
for(int i=n-1;i>=0;i--){
if(vis[i]==-1){
for(int j=1;j<=6;j++){
dp[i]+=dp[i+j]/6.0;
}
dp[i]+=1;
}
else
dp[i]=dp[vis[i]];
}
printf("%.4lf\n",dp[0]);
}
return 0;
}

HDU 4405 期望DP的更多相关文章

  1. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

  2. HDU 4405 (概率DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 题目大意:飞行棋.如果格子不是飞行点,扔骰子前进.否则直接飞到目标点.每个格子是唯一的飞行起点 ...

  3. HDU 3853(期望DP)

    题意: 在一个r*c的网格中行走,在每个点分别有概率向右.向下或停止不动.每一步需要的时间为2,问从左上角走到右下角的期望时间. SOL: 非常水一个DP...(先贴个代码挖个坑 code: /*== ...

  4. hdu 4405概率dp

    #include <cstdio> #include <cstring> #include <iostream> #include <cmath> #i ...

  5. HDU 4035 期望dp

    这道题站在每个位置上都会有三种状态 死亡回到起点:k[i] 找到出口结束 e[i] 原地不动 p[i] k[i]+e[i]+p[i] =1; 因为只给了n-1条路把所有都连接在一起,那么我们可以自然的 ...

  6. 期望DP

    BZOJ 1415 #include <iostream> #include <cstring> #include <algorithm> #include < ...

  7. HDU 4405 Aeroplane chess 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...

  8. 概率dp HDU 4405

    Aeroplane chess Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  9. HDU 3853 LOOPS:期望dp【网格型】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意: 有一个n*m的网格. 给出在每个格子时:留在原地.向右走一格,向下走一格的概率. 每走一 ...

随机推荐

  1. [HDU5015]233 Matrix

    [HDU5015]233 Matrix 试题描述 In our daily life we often use 233 to express our feelings. Actually, we ma ...

  2. 使用HTML5 Web存储的localStorage和sessionStorage方式

    localStorage(本地存储),可以长期存储数据,没有时间限制,一天,一年,两年甚至更长,数据都可以使用.sessionStorage(会话存储),只有在浏览器被关闭之前使用,创建另一个页面时同 ...

  3. nginx(五)nginx与php的安装配置

    经过前面学习,对nginx有个大概的了解,来配置LNMP;只要是在系统安装过程中选择安装比较齐全的包,基本上系统都能满足安装要求,下面是我一个一个测试的,基本上全部安装所需的库文件,放心安装: [ro ...

  4. angular 监听ng-repeat结束时间

    有些时候我们想要监听angular js中的 ng-repeat结束事件,从而好初始化一些我们的第三方或者其他需要初始化的js. 我们可以这样处理: js 中这样定义 : //监听事件 是否加载完毕a ...

  5. How to: Set up Openswan L2TP VPN Server on CentOS 6

    Have you ever wanted to set up your own VPN server? By following the steps below, you can set up you ...

  6. 《ASP.NET1200例》<ItemTemplate>标签在html里面有什么具体的作用

    严格的来说 <ItemTemplate> 在html中无意义,他只是针对诸如 Repeater.DataList.GridView中的一个模板 至于里面的含义,你可以这样想,既然Repea ...

  7. c#ASP.NET中页面传值共有这么几种方式

    一.目前在ASP.NET中页面传值共有这么几种方式: 1.Response.Redirect("http://www.hao123.com",false); 目标页面和原页面可以在 ...

  8. 烦烦烦SharePoint2013 以其他用户登录和修改AD域用户密码

    sharepoint默认是没有修改AD密码 和切换 用户的功能,这里我用future的方式来实现. 部署wsp前: 部署后 点击以其他用户身份登录 点击修改用户密码: 这里的扩展才菜单我们用Custo ...

  9. cocos2d-x如何解决图片显示模糊问题

    转载http://zhidao.baidu.com/link?url=JTUKP5quGfMQixLZSvtC2XlKMkQDyQbYW72_DRyD6KDRpkLs8_6poQtKkwsyqzU8q ...

  10. (转)SQL server 容易让人误解的问题之 聚集表的物理顺序问题

    对于MS SQL server 数据库,有几个容易让人产生误解的问题,对于这几个问题,即使很多 SQL server DBA 都有错误认识或者认识不充分,所以我想撰文几篇,把这些容易理解错误的问题前前 ...