正题

题目链接:https://www.luogu.com.cn/problem/AT2305


题目大意

\(n\)个数字两个人进行博弈,每个人的操作为

  • 选择一个大于1的数字减一
  • 之后所有数字除以所有数字的\(gcd\)

无法操作者败,保证初始所有数字互质

求是否先手必胜

\(1\leq n\leq 10^5\)


解题思路

好妙的题目,先不考虑除\(gcd\)的话,那么就是考虑\(\sum_{i=1}^n(a_i-1)\)的奇偶性。

假设目前为奇状态,那么先手的目的显然是要保持这个奇数状态,注意到如果减去后除以的是一个奇数那么状态显然后手无法改变,所以只要保证序列中有奇数即可,因为如果要有偶数那么就可以减去这个偶数变成奇数先手显然可以保持状态不变。

如果目前为偶状态,那么先手的目前就是要减去后任然是偶状态,那么只有可能除以一个偶数,也就是要让所有的数字都变成偶数。如果奇数个数大于\(1\)显然不可行,否则减去这个\(1\)后进行一个子任务的博弈即可。

最多这样\(log\ a_i\)次所以时间复杂度\(O(n\log^2 a_i)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int n,a[N];
int main()
{
scanf("%d",&n);
bool k=1,one=0;
int s=0,z=0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
s+=a[i]-1;z+=(a[i]&1);
one|=(a[i]==1);
}
while(1){
if(s&1)return puts(k?"First":"Second")&0;
if(one)return puts(k?"Second":"First")&0;
if(z==1){
for(int i=1;i<=n;i++)
if(a[i]&1){a[i]--;break;}
int d=0;z=one=s=0;
for(int i=1;i<=n;i++)d=__gcd(a[i],d);
for(int i=1;i<=n;i++){
a[i]/=d;s+=a[i]-1;
z+=(a[i]&1);one|=(a[i]==1);
}
k=!k;
}
else return puts(k?"Second":"First")&0;
}
return 0;
}

AT2305-[AGC010D]Decrementing【博弈论】的更多相关文章

  1. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  2. NOIp2018模拟赛三十六

    好久没打模拟赛了...今天一样是两道国集,一道bzoj题 成绩:13+0+95=108 A题开始看错题了...导致样例都没看懂,结果xfz提醒我后我理解了一个我自认为正确的题意(事实证明我和xfz都错 ...

  3. 【AGC010D】Decrementing

    Solution 日常博弈论做不出来. 首先,数值全部为1的局面先手必败. 在接下来的过程中,我们只关注那些大于1的数值. 按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同.那么局面 ...

  4. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  5. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  6. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  7. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  8. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. 【POJ】2234 Matches Game(博弈论)

    http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...

随机推荐

  1. 安装RHEL7配置本地yum源 -- yum不能安装时,在本地安装,亲测成功

    RHEL7 本地yum源配置我们在安装Redhat的时候一般都不会填写注册信息,因为该产品是要购买的,所以我们在使用安装好的Redhat时有的功能是受限的,使用yum源install就是其中之一.那么 ...

  2. layui关闭弹出框

    layer.close(index) - 关闭特定层 //当你想关闭当前页的某个层时 var index = layer.open(); var index = layer.alert(); var ...

  3. Gradient checking

    所需文件:本地下载 Gradient Checking Welcome to the final assignment for this week! In this assignment you wi ...

  4. .NetCore3.1获取文件并重新命名以及大批量更新及写入数据

    using Microsoft.AspNetCore.Mvc; using MySql.Data.MySqlClient; using System; using System.Collections ...

  5. 【MIT6.S081/6.828】手把手教你搭建开发环境

    目录 1. 简介 2. 安装ubuntu20.04 3. 更换源 3.1 更换/etc/apt/sources.list文件里的源 3.2 备份源列表 3.3 打开sources.list文件修改 3 ...

  6. grpc服务发现与负载均衡

    前言 在后台服务开发中,高可用性是构建中核心且重要的一环.服务发现(Service discovery)和负载均衡(Load Balance)一直都是我关注的话题.今天来谈一下我在实际中是如何理解及落 ...

  7. 小程序使用 lodash 的问题

    import _ from 'lodash' 报错: vendor.js:11874 Uncaught TypeError: Cannot read property 'prototype' of u ...

  8. HCNP Routing&Switching之OSPF特殊区域

    前文我们了解了OSPF LSA更新规则以及路由汇总相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15231880.html:今天我们来聊一聊OSPF的 ...

  9. 剑指 Offer 31. 栈的压入、弹出序列

    剑指 Offer 31. 栈的压入.弹出序列 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如,序列 {1,2,3,4,5} 是某 ...

  10. MySQL——SQL语句入门

    1.DDL: 数据库定义语言 定义对象:库.表 何为定义: 库的定义: 创建 删除 修改---->修改本身以及库中的对象(表.视图.函数.触发器...) 表的定义: 创建---->定义表的 ...