CF848E-Days of Floral Colours【dp,分治NTT】
正题
题目链接:https://www.luogu.com.cn/problem/CF848E
题目大意
\(2n\)个花排成一个圆环,\(n\)种颜色每种两个,要求两个相同颜色之间最小距离为\(1,2\)或\(n\)。
对于一种染色方案的权值为:删除掉距离为\(n\)的颜色后,剩下的连续段长度的乘积。
求所有方案的染色之和对\(998244353\)取模。
\(1\leq n\leq 50000\)
解题思路
环好像很麻烦,先考虑线段上的,现在有两个长度为\(n\)的数列,然后距离为\(n\)的点之间对应。染色可以看为连接两个点。
然后设\(g_i\)表示不使用跨越数列的连线,涂\(i\)个的方案数,那么有\(g_i=g_{i-2}+g_{i-4}\)(相邻的连接/两个都是隔着对方连)。
然后考虑有跨越数列的线的方案,且没有其他连线跨过这条线,\(f0_i\)表示第\(i\)个是满足条件的线的权值和。\(f1_i\)则表示刚好有一对距离为\(2\)的点对跨越这个线的权值和。
那么有转移方程
\]
(第一个是全程没有其他横跨边,第二个是上一条横跨边两边没有同色,第三个是上一条横跨边两边有同色)
同理可以得到\(f1\)的方程
\]
得到\(f0\)和\(f1\)之后,看一下\(f0,f1\)都是最左边没有距离为\(2\)的边越过的,但是我们转换到环上的时候需要考虑这种情况,所以我们设\(f2_i\)表示左右两边的横跨边都有同色的,中间距离为\(i\)的权值和。
方程是
\]
然后考虑转换到行上。
如果只有一个点对距离是\(n\),那么贡献是\((n-1)\),有\(n\)种旋转方法,如果这个点对两边没有同色点,那么方案数是\(g_{n-1}\),否则是\(g_{n-3}\),所以这种情况的方案是\((n-1)^2n(g_{n-1}+g_{n-3})\)
然后剩下的我们可以先固定\(1\sim n+1\),然后枚举第二个距离为\(n\)的点对。设为\(i\),那贡献就是$$i(i-1)^2(g_{i-1}f0_{n-i-1}+2g_{i-2}f1_{n-i-2}+g_{i-3}f2_{n-i-3})$$
然后前面求\(f0,f1,f2\)都可以用分治\(NTT\)搞。
时间复杂度\(O(n\log^2 n)\)
如果用生成函数再推推可以分别得到\(O(n)\)和\(O(n\log n)\)的方法。
还有可以用生成函数发现这是一个\(16\)项的线性递推式,打出前面的表再用高斯消元得到系数,可以把时间优化到\(log\)级别
路还很长啊
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,P=998244353;
ll n,m,r[N],g[N],h[3][N],f[3][N];
ll t[3][N],T[2][N],z[4][N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void Glen(ll n){
m=1;while(m<=n)m<<=1;
for(ll i=0;i<m;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(m>>1):0);
return;
}
void NTT(ll *f,ll op){
for(ll i=0;i<m;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=m;p<<=1){
ll len=(p>>1),tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<m;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll inv=power(m,P-2);
for(ll i=0;i<m;i++)
f[i]=f[i]*inv%P;
}
return;
}
void CDQ(ll l,ll r){
if(l==r){
(f[0][l]+=h[0][l])%=P;
(f[1][l]+=h[1][l])%=P;
return;
}
ll mid=(l+r)>>1;CDQ(l,mid);
Glen((r-l+1)*2);
for(ll i=0;i<m;i++)
t[0][i]=t[1][i]=t[2][i]=T[0][i]=T[1][i]=0;
for(ll i=0;i<=r-l+1;i++)
t[0][i]=h[0][i],t[1][i]=h[1][i],t[2][i]=h[2][i];
for(ll i=0;i<=mid-l;i++)
T[0][i]=f[0][i+l],T[1][i]=f[1][i+l];
NTT(t[0],1);NTT(t[1],1);NTT(t[2],1);
NTT(T[0],1);NTT(T[1],1);
for(ll i=0;i<m;i++){
z[0][i]=t[0][i]*T[0][i]%P,z[1][i]=t[1][i]*T[1][i]%P;
z[2][i]=t[1][i]*T[0][i]%P,z[3][i]=t[2][i]*T[1][i]%P;
}
NTT(z[0],-1);NTT(z[1],-1);NTT(z[2],-1);NTT(z[3],-1);
for(ll i=0;i<=r-l+1;i++){
if(l+i+1>mid&&l+i+1<=r){
f[0][l+i+1]=(f[0][l+i+1]+z[0][i])%P;
f[1][l+i+1]=(f[1][l+i+1]+z[2][i])%P;
}
if(l+i+3>mid&&l+i+3<=r){
f[0][l+i+3]=(f[0][l+i+3]+z[1][i])%P;
f[1][l+i+3]=(f[1][l+i+3]+z[3][i])%P;
}
}
CDQ(mid+1,r);return;
}
void solve(ll l,ll r){
if(l==r){(f[2][l]+=h[2][l])%=P;return;}
ll mid=(l+r)>>1;solve(l,mid);
Glen((r-l+1)*2);
for(ll i=0;i<m;i++)
t[1][i]=t[2][i]=T[0][i]=T[1][i]=0;
for(ll i=0;i<=r-l+1;i++)
t[1][i]=h[1][i],t[2][i]=h[2][i];
for(ll i=0;i<=mid-l;i++)
T[0][i]=f[1][l+i],T[1][i]=f[2][l+i];
NTT(t[1],1);NTT(t[2],1);NTT(T[0],1);NTT(T[1],1);
for(ll i=0;i<m;i++){
z[0][i]=t[1][i]*T[0][i]%P;
z[1][i]=t[2][i]*T[1][i]%P;
}
NTT(z[0],-1);NTT(z[1],-1);
for(ll i=0;i<r-l+1;i++){
if(l+i+1>mid&&l+i+1<=r)
(f[2][l+i+1]+=z[0][i])%=P;
if(l+i+3>mid&&l+i+3<=r)
(f[2][l+i+3]+=z[1][i])%=P;
}
solve(mid+1,r);
return;
}
signed main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%lld",&n);g[0]=g[2]=1;
for(ll i=4;i<=n;i++)
g[i]=(g[i-4]+g[i-2])%P;
for(ll i=0;i<=n;i++){
h[0][i]=g[i]*i%P*i%P;
h[1][i]=g[i]*(i+1)%P*(i+1)%P;
h[2][i]=g[i]*(i+2)%P*(i+2)%P;
}
CDQ(0,n);
solve(0,n);
ll ans=(g[n-1]+g[n-3])*(n-1)%P*(n-1)%P*n%P;
for(ll i=2;i<n-1;i++){
ll tmp=g[i-1]*f[0][n-i-1]%P;
tmp=(tmp+2*g[i-2]*f[1][n-i-2]%P)%P;
tmp=(tmp+g[i-3]*f[2][n-i-3]%P)%P;
tmp=tmp*i%P*(i-1)%P*(i-1)%P;
ans=(ans+tmp)%P;
}
printf("%lld\n",ans);
return 0;
}
CF848E-Days of Floral Colours【dp,分治NTT】的更多相关文章
- CF848E Days of Floral Colours——DP+多项式求逆/分治NTT
官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与 ...
- Codeforces 848E - Days of Floral Colours(分治 FFT)
Codeforces 题目传送门 & 洛谷题目传送门 神仙 D1E,一道货真价实的 *3400 %%%%%%%%%%%% 首先注意到一点,由于该图为中心对称图形,\(1\sim n\) 的染色 ...
- HDU 5279 YJC plays Minecraft (分治NTT优化DP)
题目传送门 题目大意:有$n$个小岛,每个小岛上有$a_{i}$个城市,同一个小岛上的城市互相连接形成一个完全图,第$i$个小岛的第$a_{i}$个城市和第$i+1$个小岛的第$1$个城市连接,特别地 ...
- HDU 5322 Hope (分治NTT优化DP)
题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之 ...
- ZOJ 3874 Permutation Graph (分治NTT优化DP)
题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- CF960G Bandit Blues 分治+NTT(第一类斯特林数)
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...
- CF 848E(动态规划+分治NTT)
传送门: http://codeforces.com/problemset/problem/848/E 题解: 假设0-n一定有一条边,我们得到了一个方案,那么显然是可以旋转得到其他方案的. 记最大的 ...
- Codeforces 1553I - Stairs(分治 NTT+容斥)
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序 ...
随机推荐
- wpf 自定义 RadioButton.
<Style TargetType="RadioButton" x:Key="nav"> <Setter Property="Tem ...
- 利用Java进行zip文件压缩与解压缩
摘自: https://www.cnblogs.com/alphajuns/p/12442315.html 工具类: package com.alphajuns.util; import java.i ...
- linux中的分号&&和&,|和||说明与用法
在用linux命令时候,我们可以一行执行多条命令或者有条件的执行下一条命令,下面我们讲解一下linux命令分号&&和&,|和||的用法 在用linux命令时候,我们可以一行执行 ...
- 八:Filter(过滤器)
一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态 ...
- Linux centos7 -bash: pstree: 未找到命令
2021-08-12 1. 命令简介pstree命令将所有行程以树状图显示,树状图将会以 pid (如果有指定) 或是以 init 这个基本行程为根 (root),如果有指定使用者 id,则树状图会只 ...
- Linux系统下的软件管理(rpm)、搭建第三方软件库、yum的黑名单
对wps-office进行模糊匹配照样可以查找出该软件yum clean all ? ? ? ?##清空yum缓存识别新配置 测验安装wps软件: 安装成功即可使用办公软件 1.yum install ...
- Hadoop day1
Hadoop就是存储海量数据和分析海量数据的工具 1.概念 Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce ...
- element-ui 用 el-checkbox-group 做权限管理
template <el-checkbox-group v-model="menu_ide" v-for="(item,index) in menu_idss&qu ...
- 云原生 AI 前沿:Kubeflow Training Operator 统一云上 AI 训练
分布式训练与 Kubeflow 当开发者想要讲深度学习的分布式训练搬上 Kubernetes 集群时,首先想到的往往就是 Kubeflow 社区中形形色色的 operators,如 tf-operat ...
- Spring AOP Aspect的简单实现(基于XML)
第一步:导包 第二步:实现类和切面类 Service("userService")public class IUserviceImpl implements IUserServic ...