2020 ICPC 沈阳站 I - Rise of Shadows 题解
\(PS\):符号 \([\ \rm P\ ]\) 的意义是:当表达式 \(\rm P\) 为真则取值为 \(1\),为假则取值为 \(0\)。
题目大意
给你一个一天有 \(H\) 小时、一小时有 \(M\) 分钟的表和一个正整数 \(A\),问一天内有多少个整数时刻,使得分针与时针的夹角小于等于 \(\displaystyle\frac{2\pi A}{HM}\)。
题目分析
易知分针转速 \(w_1=\displaystyle \frac{2\pi}{M}\),时针转速 \(w_2=\displaystyle\frac{2\pi}{HM}\),设当前时刻为 \(T\);
一天有 \(HM\) 个整数时刻,即 \(T\in[0,HM)\);
于是对于每一个时刻,我们判断一下两个指针的夹角 \(\theta\) 是否小于等于 \(\displaystyle\frac{2\pi A}{HM}\) ,满足就贡献加加,最后输出总贡献即可。
方法一:数论
对于任意时刻 \(T\) 与两指针间的夹角 \(\theta\),显然有:
\]
注意到 \(\theta\in[0,2\pi]\),所以还要对 \(2\pi\) 取个模(分针转一圈又转回来了),即:
\]
同时因为两个指针之间的夹角可以选到两个数值,逆时针转有一个夹角,顺时针转有一个夹角,这里我们肯定是选更小的角来判断是否满足条件,即最终我们要求的是:
\]
可以转化为:
\]
把 \(\theta=\displaystyle\frac{2\pi(H-1)T}{HM}\mod{2\pi}\) 代入并化简得:
\]
此时我们其实就可以把 \(HM\) 看作是 \(2\pi\),\(H-1\) 看作是每过一个时刻两个指针夹角的变化量,然后分两种情况考虑:
一、当 \(\mathbf {A=HM/2}\) 时,问题等价于”一天内有多少个整数时刻,使得分针与时针的夹角小于等于 \(\pi\)“,显然每个时刻都满足(如果顺时针看夹角大于 \(\pi\),那逆时针看一定小于,反之亦然),此时答案为 \(HM\),特判即可;
二、当 \(\mathbf {A\neq HM/2}\) 时,若有 \(T(H-1)\mod{HM}\leq A\),则一定不会有 \(T(H-1)\mod{HM}\geq HM-A\),所以答案就是这两部分的贡献相加。
我们令 \(G=\gcd(H-1,HM)\)。
先计算式子的左边:
\]
当 \(G=1\) 时 ,因为 \(T\in[0,HM)\),构成了一个模 \(HM\) 的完全剩余系,由完全剩余系的性质可得 \(T(H-1)\mod{HM}\) 也是一个完全剩余系,即它一定取遍了 \(0\sim HM-1\) 的每一个数,此时我们就不用关心到底在哪个时刻造成了贡献,只需知道范围内有多少个数满足小于等于 \(A\) 即可,显然有 \(0\sim A\) 总共 \(A+1\) 个数满足,因此这部分的贡献就是 \(A+1\)。
当 \(G\neq1\) 时,我们利用同余的另一个性质: \(\displaystyle ac\equiv bc\pmod d\iff a\equiv b\pmod{\frac{d}{(c,d)}}\),把式子转化为:
\]
相当于我们把 \(T\in[0,HM)\) 平均分成了 \(G\) 段,每一段的 \(T\) 都构成了一个模 \(\displaystyle\frac{HM}{G}\) 的完全剩余系,此时这里的每一段其实就等价于上面 \(G=1\) 的情况,只是 \(T\) 的范围和模数变了下而已,因此每段都造成了 \(\displaystyle \lfloor\frac AG\rfloor+1\) 的贡献,左边的总贡献就是 \(G*(\displaystyle \lfloor\frac AG\rfloor+1)\)。
再看式子右边:
\]
同样地,当 \(G=1\) 时,跟上面一样分析一波,发现其实是一样的思路(显然左边跟右边造成的贡献是对称的),只不过因为 \(T\) 不能取到 \(HM\),所以贡献只有 \(A\)(\(HM-A\sim HM-1\) 共有 \(A\) 个数)。
当 \(G\neq1\) 时,也同上,把 \(T\) 分成 \(G\) 段,右边的总贡献就是 \(G*\displaystyle \lfloor\frac AG\rfloor\)。
因此最终答案就是左边贡献和右边贡献之和,即 \(G*(\displaystyle 2\lfloor\frac AG\rfloor+1)\)。
Code
#include<bits/stdc++.h>
using namespace std;
int main(){
long long H,M,A;
cin >> H >> M >> A;
if(H*M==A*2){
cout << H*M;
}
else {
long long G=__gcd(H-1,H*M);
cout << G*(2*(A/G)+1);
}
}
方法二:类欧几里得
待填坑~~
2020 ICPC 沈阳站 I - Rise of Shadows 题解的更多相关文章
- 2016 ACM/ICPC 沈阳站 小结
铜铜铜…… 人呐真奇怪 铁牌水平总想着运气好拿个铜 铜牌水平总想着运气好拿个银 估计银牌的聚聚们一定也不满意 想拿个金吧 这次比赛挺不爽的 AB两道SB题,十分钟基本全场都过了 不知道出这种题有什么意 ...
- HDU 5950Recursive sequence ICPC沈阳站
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 2015 ICPC 沈阳站M题
M - Meeting Time Limit:6000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit ...
- 2016ACM/ICPC亚洲区沈阳站-重现赛赛题
今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)
Counting Cliques Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 5948 Thickest Burger 【模拟】 (2016ACM/ICPC亚洲区沈阳站)
Thickest Burger Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5949 Relative atomic mass 【模拟】 (2016ACM/ICPC亚洲区沈阳站)
Relative atomic mass Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- 2015ACM/ICPC亚洲区沈阳站 Pagodas
Pagodas Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
随机推荐
- IDL使用
出错的问题,可能是因为路径,或者没有建立工程文件. 运行IDL并在preferences项里修改设置(如图中红框所示) (IDL 8.4中在) 2, 中文字符显示乱码,改为gb2312
- 常用的excel技巧
隐藏 冻结 设置下拉选项 复制.移动sheet 自动求和
- Selenium多浏览器处理 (Chrome/Firefox/IE)
测试用例文件:test_selenium/test_hogwarts.py 使用pytest框架 定义一个变量,通过外部传入变量,确定使用哪个浏览器 browser = os.getenv(" ...
- PHP 算法之 -- 计算器设计
<?php//$exp='300+20*6-20'; $exp='71*2-50*3-3-67*6+80'; //14-15-3=-4 //定义一个数栈和一个符号栈 $numsStack=new ...
- Winform 控件命名规范
前言 最近 Winform 项目做得比较多,控件命名规范上常用的能记住,但是有些总要查,写个记录吧.方便以后自己用,大家也可以参考. 标准控件 序号 控件类型简写 控件类型 1 btn Button ...
- 深度学习--GAN学习笔记
生成模型 WGAN Blog GAN 推荐学习网站 生成模型 什么是生成模型? GMM: 用来做聚类,(非监督学习) NB(朴素贝叶斯):(监督学习,可以用来做垃圾邮件分类) Logistics 回归 ...
- Kronecker product
Kronecker product 的基本运算 结合律 \begin{equation} \mathrm{A} \otimes (\mathrm{B + C}) = \mathrm{A} \otime ...
- 无法解析的外部符号之_cvLoadImage,_cvCreateMat,_cvReleaseImage之类
一个错误可能是:附加依赖项少添加了库函数: 还有一个可能是:配置设置错误了,比如该是64位,却设置成win32了.改过来就好了. 要注意opencv的使用中 在Debug.Release模式以及x64 ...
- 函数式编程 —— 将 JS 方法函数化
前言 JS 调用方法的风格为 obj.method(...),例如 str.indexOf(...),arr.slice(...).但有时出于某些目的,我们不希望这种风格.例如 Node.js 的源码 ...
- windows10安装MySQL8.0.27
1.官网下载安装包:https://dev.mysql.com/downloads/mysql/ 2.将解压文件解压到你安装的目录:D:\mysql-8.0.27-winx64 注意:不要放在有中文名 ...