2020 ICPC 沈阳站 I - Rise of Shadows 题解
\(PS\):符号 \([\ \rm P\ ]\) 的意义是:当表达式 \(\rm P\) 为真则取值为 \(1\),为假则取值为 \(0\)。
题目大意
给你一个一天有 \(H\) 小时、一小时有 \(M\) 分钟的表和一个正整数 \(A\),问一天内有多少个整数时刻,使得分针与时针的夹角小于等于 \(\displaystyle\frac{2\pi A}{HM}\)。
题目分析
易知分针转速 \(w_1=\displaystyle \frac{2\pi}{M}\),时针转速 \(w_2=\displaystyle\frac{2\pi}{HM}\),设当前时刻为 \(T\);
一天有 \(HM\) 个整数时刻,即 \(T\in[0,HM)\);
于是对于每一个时刻,我们判断一下两个指针的夹角 \(\theta\) 是否小于等于 \(\displaystyle\frac{2\pi A}{HM}\) ,满足就贡献加加,最后输出总贡献即可。
方法一:数论
对于任意时刻 \(T\) 与两指针间的夹角 \(\theta\),显然有:
\]
注意到 \(\theta\in[0,2\pi]\),所以还要对 \(2\pi\) 取个模(分针转一圈又转回来了),即:
\]
同时因为两个指针之间的夹角可以选到两个数值,逆时针转有一个夹角,顺时针转有一个夹角,这里我们肯定是选更小的角来判断是否满足条件,即最终我们要求的是:
\]
可以转化为:
\]
把 \(\theta=\displaystyle\frac{2\pi(H-1)T}{HM}\mod{2\pi}\) 代入并化简得:
\]
此时我们其实就可以把 \(HM\) 看作是 \(2\pi\),\(H-1\) 看作是每过一个时刻两个指针夹角的变化量,然后分两种情况考虑:
一、当 \(\mathbf {A=HM/2}\) 时,问题等价于”一天内有多少个整数时刻,使得分针与时针的夹角小于等于 \(\pi\)“,显然每个时刻都满足(如果顺时针看夹角大于 \(\pi\),那逆时针看一定小于,反之亦然),此时答案为 \(HM\),特判即可;
二、当 \(\mathbf {A\neq HM/2}\) 时,若有 \(T(H-1)\mod{HM}\leq A\),则一定不会有 \(T(H-1)\mod{HM}\geq HM-A\),所以答案就是这两部分的贡献相加。
我们令 \(G=\gcd(H-1,HM)\)。
先计算式子的左边:
\]
当 \(G=1\) 时 ,因为 \(T\in[0,HM)\),构成了一个模 \(HM\) 的完全剩余系,由完全剩余系的性质可得 \(T(H-1)\mod{HM}\) 也是一个完全剩余系,即它一定取遍了 \(0\sim HM-1\) 的每一个数,此时我们就不用关心到底在哪个时刻造成了贡献,只需知道范围内有多少个数满足小于等于 \(A\) 即可,显然有 \(0\sim A\) 总共 \(A+1\) 个数满足,因此这部分的贡献就是 \(A+1\)。
当 \(G\neq1\) 时,我们利用同余的另一个性质: \(\displaystyle ac\equiv bc\pmod d\iff a\equiv b\pmod{\frac{d}{(c,d)}}\),把式子转化为:
\]
相当于我们把 \(T\in[0,HM)\) 平均分成了 \(G\) 段,每一段的 \(T\) 都构成了一个模 \(\displaystyle\frac{HM}{G}\) 的完全剩余系,此时这里的每一段其实就等价于上面 \(G=1\) 的情况,只是 \(T\) 的范围和模数变了下而已,因此每段都造成了 \(\displaystyle \lfloor\frac AG\rfloor+1\) 的贡献,左边的总贡献就是 \(G*(\displaystyle \lfloor\frac AG\rfloor+1)\)。
再看式子右边:
\]
同样地,当 \(G=1\) 时,跟上面一样分析一波,发现其实是一样的思路(显然左边跟右边造成的贡献是对称的),只不过因为 \(T\) 不能取到 \(HM\),所以贡献只有 \(A\)(\(HM-A\sim HM-1\) 共有 \(A\) 个数)。
当 \(G\neq1\) 时,也同上,把 \(T\) 分成 \(G\) 段,右边的总贡献就是 \(G*\displaystyle \lfloor\frac AG\rfloor\)。
因此最终答案就是左边贡献和右边贡献之和,即 \(G*(\displaystyle 2\lfloor\frac AG\rfloor+1)\)。
Code
#include<bits/stdc++.h>
using namespace std;
int main(){
long long H,M,A;
cin >> H >> M >> A;
if(H*M==A*2){
cout << H*M;
}
else {
long long G=__gcd(H-1,H*M);
cout << G*(2*(A/G)+1);
}
}
方法二:类欧几里得
待填坑~~
2020 ICPC 沈阳站 I - Rise of Shadows 题解的更多相关文章
- 2016 ACM/ICPC 沈阳站 小结
铜铜铜…… 人呐真奇怪 铁牌水平总想着运气好拿个铜 铜牌水平总想着运气好拿个银 估计银牌的聚聚们一定也不满意 想拿个金吧 这次比赛挺不爽的 AB两道SB题,十分钟基本全场都过了 不知道出这种题有什么意 ...
- HDU 5950Recursive sequence ICPC沈阳站
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 2015 ICPC 沈阳站M题
M - Meeting Time Limit:6000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit ...
- 2016ACM/ICPC亚洲区沈阳站-重现赛赛题
今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)
Counting Cliques Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 5948 Thickest Burger 【模拟】 (2016ACM/ICPC亚洲区沈阳站)
Thickest Burger Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5949 Relative atomic mass 【模拟】 (2016ACM/ICPC亚洲区沈阳站)
Relative atomic mass Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- 2015ACM/ICPC亚洲区沈阳站 Pagodas
Pagodas Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
随机推荐
- nginx 常用x代码
1.nginx 禁止ip直接访问,只允许域名访问,直接在.conf文件里 server上面再添加一个server 代码,不可以写同一个server里: server { listen 80 defau ...
- Windows命令行在任意位置启动和退出nginx
写在前面 本文给出Windows系统中能在任意路径下通过命令行启动和退出nginx的方法.不想看过程的读者可以直接跳转到结论,一样能解决问题. 正文 过程 很多Windows下的nginx教程都教我们 ...
- P2490-[SDOI2011]黑白棋【博弈论,dp】
正题 题目链接:https://www.luogu.com.cn/problem/P2490 题目大意 一个长度为\(n\)的棋盘上放下\(k\)个棋子. 第一个要是白色,下一个要是黑色,在下一个是白 ...
- idea使用gitee的小坑
1. 账号配置 账号配置登陆时提示 *** is not a valid login name: Email support only. 翻译:只能支持邮箱登录 解决方法:在gitee网站上查看自己配 ...
- JavaFx全局快捷键实现(Kotlin)
原文地址: JavaFx全局快捷键实现(Kotlin) | Stars-One的杂货小窝 最近整款工具需要用到全局快捷键,搜集了下网上的资料,发现有个JIntellitype库可以用来实现全局快捷键, ...
- Python代码阅读(第10篇):随机打乱列表元素
本篇阅读的代码实现了随机打乱列表元素的功能,将原有列表乱序排列,并返回一个新的列表(不改变原有列表的顺序). 本篇阅读的代码片段来自于30-seconds-of-python. shuffle fro ...
- 数据结构与算法——迪杰斯特拉(Dijkstra)算法
tip:这个算法真的很难讲解,有些地方只能意会了,多思考多看几遍还是可以弄懂的. 应用场景-最短路径问题 战争时期,胜利乡有 7 个村庄 (A, B, C, D, E, F, G) ,现在有六个邮差, ...
- ajax 中文参数乱码问题不一定是编码格式问题。
代码要修改用户的信息,写了三个ajax,第一个写完测试没有问题,后面俩逻辑一样的就直接复制粘贴了.到第二个ajax测试的时候发现中文会乱码 如下 $.ajax({//中文参数乱码 url: '/edi ...
- mysql从零开始之MySQL 创建数据库
MySQL 创建数据库 我们可以在登陆 MySQL 服务后,使用 create 命令创建数据库,语法如下: CREATE DATABASE 数据库名; 以下命令简单的演示了创建数据库的过程,数据名为 ...
- Serverless 的价值
作者 | 许晓斌 阿里云高级技术专家 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复 入门 ,即可获取 Serverless ...