Solution -「CF 1491H」Yuezheng Ling and Dynamic Tree
\(\mathcal{Description}\)
Link. 做题原因:题目名。
给定一个长度 \(n-1\) 的序列 \(\{a_2,a_3,\cdots,a_n\}\),其描述了一棵 \(n\) 个点的有根树—— \(1\) 为根节点,\(i~(i\in(1,n])\) 结点的父亲是 \(a_i~(a_i\in[1,i))\)。接下来有 \(q\) 次操作:
- 给定 \(l,r,x\),\(\forall i\in[l,r],~a_i\leftarrow \max\{a_i-x,1\}\);
- 给定 \(u,v\),求 \(u,v\) 在当前树上的 LCA。
\(n,q\le10^5\)。
\(\mathcal{Solution}\)
树是阿绫给的,操作是天依说的,所以题是一定会做的。
首先明确一点:这是到题如其名的树题还是一道序列题。
鉴于随便修改几下就可以把树拍得面目全非,前者可以叉掉,这就是道序列题。
接着,思考 LCA 维护的形式,倍增太离谱了,考虑类似树剖维护 top 的方法——我们并不需要让 top 做到如树剖那样 \(\log\) 级别的优秀,这样才能应对灵活的修改。
唠半天啦,这道题就是一道分块维护序列的题。
首先根号分块,定义一个关键的 \(\operatorname{top}(u)\) 表示当前树上 \(u\) 的祖先中,不与 \(u\) 在同一块中的编号最大的结点,若不存在,则 \(\operatorname{top}(u)=1\)。发现美妙性质:跳 \(\operatorname{top}\) 链是 \(\mathcal O(\sqrt n)\) 的,收束前文提到的树剖思想;且暴力计算 \(\operatorname{top}(u)\) 是 \(\mathcal O(n)\) 的,非常方便。接了来只需要尝试维护这一信息。
对于修改,散点暴力扫即可(注意一定是从左到右更新)。对于整块,我们似乎还是需要 \(\mathcal O(\sqrt n)\) 去重新更新 \(\operatorname{top}\)?
答案是肯定的,但不完全——若一个整块被修改次数超过块的大小,则必然有 \(\operatorname{top}(u)=a_u\)。表明我们确实需要对于 \(\mathcal O(\sqrt n)\) 个块中的每一个,以 \(\mathcal O(\sqrt n)\) 的时间暴力处理其前 \(\operatorname O(\sqrt n)\) 次修改,不多不少,\(\mathcal O(n\sqrt n)\),此后直接对于整块记录减法标记即可。
对于询问,亦类似树剖求 LCA:
- 若 \(u,v\) 不属于同一块,\(u\leftarrow \operatorname{top}(u),v\leftarrow\operatorname{top}(v)\);
- 否则若 \(\operatorname{top}(u)\not=\operatorname{top}(v)\),令 \(\operatorname{top}\) 较大的结点为其 \(\operatorname{top}\);
- 否则,令较深结点为其父亲。
跳 \(\operatorname{top}\) 至多 \(\mathcal O(\sqrt n)\) 下;跳父亲只会在同块时跳 \(\mathcal O(\sqrt n)\) 次(然后必然结束询问),所以单次查询是 \(\mathcal O(\sqrt n)\) 的。
综上,复杂度 \(\mathcal O((n+q)\sqrt n)\),让天依满意啦~
\(\mathcal{Code}\)
/* Clearink */
#include <cmath>
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}
inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }
const int MAXN = 1e5, MAXSN = 317;
int n, q, par[MAXN + 5];
int bsiz, bel[MAXN + 5], top[MAXN + 5], mcnt[MAXSN + 5], tag[MAXSN + 5];
#define utop( i ) ( top[i] = bel[par[i]] != bel[i] ? par[i] : top[par[i]] )
#define gpar( i ) ( pushdn( bel[i] ), par[i] )
#define gtop( i ) ( mcnt[bel[i]] >= bsiz ? pushdn( bel[i] ), par[i] : top[i] )
inline void init() {
bsiz = sqrt( 1. * n ), bel[1] = 1, bel[n + 1] = -1;
rep ( i, 2, n ) bel[i] = ( i - 1 ) / bsiz + 1, utop( i );
}
inline void pushdn( const int i ) {
if ( !tag[i] ) return ;
int bl = ( i - 1 ) * bsiz + 1, br = imin( i * bsiz, n );
rep ( j, bl, br ) par[j] = imax( par[j] - tag[i], 1 );
// top[] is meaningless for this block.
tag[i] = 0;
}
inline void modify( const int l, const int r, const int x ) {
pushdn( bel[l] );
for ( int i = l; bel[i] == bel[l]; ++i ) {
if ( i <= r ) par[i] = imax( par[i] - x, 1 );
utop( i );
}
if ( bel[l] == bel[r] ) return ;
rep ( i, bel[l] + 1, bel[r] - 1 ) {
if ( mcnt[i] >= bsiz ) { tag[i] += x; continue; }
++mcnt[i];
int bl = ( i - 1 ) * bsiz + 1, br = imin( i * bsiz, n );
rep ( j, bl, br ) par[j] = imax( par[j] - x, 1 ), utop( j );
}
pushdn( bel[r] );
for ( int i = ( bel[r] - 1 ) * bsiz + 1; bel[i] == bel[r]; ++i ) {
if ( i <= r ) par[i] = imax( par[i] - x, 1 );
utop( i );
}
}
inline int query( int u, int v ) {
while ( u != v ) {
int tu = gtop( u ), tv = gtop( v );
if ( bel[u] != bel[v] ) bel[u] > bel[v] ? u = tu : v = tv;
else if ( tu != tv ) u = tu, v = tv;
else u > v ? u = gpar( u ) : v = gpar( v );
}
return u;
}
int main() {
n = rint(), q = rint(), par[1] = 1;
rep ( i, 2, n ) par[i] = rint();
init();
for ( int op, u, v; q--; ) {
op = rint(), u = rint(), v = rint();
if ( op & 1 ) modify( u, v, rint() );
else wint( query( u, v ) ), putchar( '\n' );
}
return 0;
}
Solution -「CF 1491H」Yuezheng Ling and Dynamic Tree的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- js 动态设置键值对数组 ,类似于 java 的Map 类型
1.前言 我想设置一个数据 var json = {a1 :1 , a2 :2 , a3 :3 .....} 这样的动态数据 ,怎么写呢? 2.正确写法 var json = []; for ...
- node之module与fs文件系统
命令行窗口(小黑屏).cmd窗口.终端.shell 开始菜单 --> 运行 --> CMD --> 回车 常用的指令: dir 列出当前目录下的所有文件 cd 目录名 进入到指定的目 ...
- 如何向内核提交补丁?——FirstKernelPatch
参考 https://kernelnewbies.org/FirstKernelPatch
- C# 10分钟完成百度翻译(机器翻译)——入门篇
我们之前基于百度ai开发平台实现了人脸识别 [1].文字识别 [2].语音识别 [3] 与合成的入门和进阶,今天我们来实现百度翻译的实现. 随着"一带一路"政策的开展,各种项目迎接 ...
- Java 集合详解 | 一篇文章解决Java 三大集合
更好阅读体验:Java 集合详解 | 一篇文章搞定Java 三大集合 好看的皮囊像是一个个容器,有趣的灵魂像是容器里的数据.接下来讲解Java集合数据容器. 文章篇幅有点长,还请耐心阅读.如只是为了解 ...
- github与gitlab创建新仓库
github创建新仓库 然后根据下一页的命令提示进行即可 gitlab创建新仓库 git init git remote add origin git@***.***.**.**:user/proje ...
- 2月3日 体温APP开发记录
1.阅读构建之法 现代软件工程(第三版) 2.观看Android开发视频教程最新版 Android Studio开发 3.回返地址学习,下载导入相关jar包
- 【刷题-LeetCode】200 Number of Islands
Number of Islands Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. ...
- opencv 4.0 + linux下静态编译,展示详细ccmake的参数配置
#先安装 cmake 3.14 # cmake安装到了 /usr/local/bin #配置PATH export PATH="$PATH:/usr/local/bin" #下载最 ...
- azure 控制台小工具
这个控制台往往被忽略.