一、迭代器

1.可迭代对象:遵循可迭代协议,内部含有__iter__方法的对象就叫做可迭代对象。(str、list、tulpe、dict、set)

查询数据类型的方法

s = 'laonanhai'
print(dir(s)) # dir(数据类型)查询数据类型的所有方法
l1=[1, 2, 3, 4]
print(dir(l1))
dic = {'1':'guo'}
print(dir(dic)) 执行输出所有方法

判断是否是可迭代对象的两种方法:

1)print('__iter__' in dir(s)) 直接判断__iter__是否在数据类型的方法里。

2)print(isinstance(l,Iterable))

from collections import Iterable
l=[1,2,3,4]
print(isinstance(l,Iterable)) #True

2.迭代器:遵循迭代器协议,含有__iter__方法和__next__方法。

l1=[1,2,3]
l1_obj = l1.__iter__()
print('__iter__' in dir(l1_obj)) #True
print('__next__' in dir(l1)) #False __next__不在可迭代对象中
print('__next__' in dir(l1_obj)) # True

可迭代对象转化成迭代器:可迭代对象.__iter__()

l1=[1,2,3]
l1_obj = l1.__iter__()
print(l1_obj.__next__())
print(l1_obj.__next__())
print(l1_obj.__next__())
1
2
3
print一次打印一个元素
l1_obj = l1.__iter__()
for i in l1_obj:
print(i)
循环打印

判断是否是迭代器的方法:

# 方法1
l1=[1,2,3]
l1_obj = l1.__iter__()
print('__iter__' in dir(l1_obj))
print('__next__' in dir(l1_obj))
# 方法2
l1=[1,2,3]
l1_obj = l1.__iter__()
from collections import Iterator
print(isinstance(l1_obj,Iterator))

迭代器的特点:

1)节省内存空间。

2)满足惰性机制。(next一条执行一条)

3)不能反复取值,不可逆。

用while循环模拟for循环机制:

1)将可迭代对象转化为迭代器。

2)内部使用__next__方法取值。

3)运用了异常处理去处理报错。

l1=[1, 2, 3, 4, 5, 6]
l1_obj=l1.__iter__()
while True:
try:
i=l1_obj.__next__()
print(i)
except Exception:
break

二、生成器

自己写的能实现迭代器功能的是生成器,本质上是迭代器,特点是惰性运算。

生成器的产生方式:

1.用生成器函数构造。(一条一条打印)

第一:函数中只要有yield就不是函数,而是一个生成器。

第二:g称作生成器对象。

def func1():
print(111)
print(222)
yield 666
yield 777
g=func1()
print(g.__next__())
print(g.__next__())
import time
def genrator_fun1():
a=1
print('现在定义了a变量')
yield a
b=2
print('现在定义了b变量')
yield b
g1=genrator_fun1()
print('g1:',g1)
print('-'*20)
print(next(g1))
time.sleep(1)
print(next(g1))
def func1():
for i in range(1,10000):
yield '老男孩校服%d号'% i
g = func1()
for i in range(50):
g.__next__()
print(g.__next__())
for j in range(150):
print(g.__next__())

send:send和next功能一样,都是执行一次,send可以给上一个yield赋值,第一次使用生成器时,用next获取下一个值(不能用send),最后一个yield不能接收外部的值。

def generator():
print(123)
content = yield 1
print(content)
print(456)
yield 2 #最后一个yield没有值
g = generator()
g.__next__() #第一个值不能用send
g.send('hello') 执行结果:
123
hello
456

2.用生成器推导式。

1)列表推导式:一行代码搞定,一目了然,占内存,不易排错。

列表生成式是python内置的非常简单却强大的用来创建list的生成式,例如,要生成list[1,2,3,4,5,6,7,8,9,10]可以用range(1,11)

x = range(1,11)
print(x)
返回结果:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

单如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做呢?

L = []
for x in range(1,11)
L.append(x * x)
print(L)
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list
print([x * x for x in range(1,11)])
执行结果:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] for 循环后面还可以加if判断筛选出仅偶数的平方
[x * x for x in range(1, 11) if x % 2 == 0] 还可以使用两层循环,生成全排列
>>>[m + n for m in "ABC" for n in "XYZ"]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

列表生成式实现九九乘法表

print("\n".join(["\t".join(["%s*%s=%s"%(j,i,i*j) for j in range(1,i+1)]) for i in range(1,10)]))

1*1=1
1*2=2 2*2=4
1*3=3 2*3=6 3*3=9
1*4=4 2*4=8 3*4=12 4*4=16
1*5=5 2*5=10 3*5=15 4*5=20 5*5=25
1*6=6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36
1*7=7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49
1*8=8 2*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64
1*9=9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81

2)生成器表达式:通过列表生成式可以创建一个list,但是受到内存的限制列表的容量是有限的,会占用很大的存储空间,如果想要节省内存,提升程序的效率就可以利用生成器generator一边循环一边计算,生成器表达式只要把列表表达式的[ ]改成( )就可以创建一个generator

g = (x * x for x in range(10))
print(g)
执行结果:<generator object <genexpr> at 0x00000000035BC410>
通过g.__next__()获取generator 的下一个值
print(g.__next__())
print(g.__next__())
print(g.__next__())

generator保存的是算法,每次调用next()的时候才会计算g的下一个元素值,直到计算到最后一个元素值时,会返回stopIteration的错误。

3)字典推导式

mcase = {'a':10,'b':20}
mcase_frequency = {mcase[k]:k for k in mcase}
print(mcase_frequency) 执行结果:
{10: 'a', 20: 'b'}

4)集合推导式

squared = list({x**2 for x in [1,-1,2]})
print(squared) 执行结果:
[1, 4]

推导式模式:

1)循环模式:经过加工的i for i in 可迭代对象。

l1 = [i*i for i in range(1,11)]
print(l1) [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

2)筛选模式:经过加工的i for i in 可迭代对象 if条件筛选。

l2 = [i for i in range(1,101) if i%3 == 0]
print(l2) [3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]
l3 = [name for i in names for name in i if  name.count('e') == 2 ]
print(l3) ['Jefferson', 'Wesley', 'Steven', 'Jennifer']

3.数据类型的转化

Python基础—迭代器、生成器(Day13)的更多相关文章

  1. Python基础-迭代器&生成器&装饰器

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 我现在有个需求,看 ...

  2. python基础—迭代器、生成器

    python基础-迭代器.生成器 1 迭代器定义 迭代的意思是重复做一些事很多次,就像在循环中做的那样. 只要该对象可以实现__iter__方法,就可以进行迭代. 迭代对象调用__iter__方法会返 ...

  3. python基础——迭代器

    python基础——迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器 ...

  4. 十三. Python基础(13)--生成器进阶

    十三. Python基础(13)--生成器进阶 1 ● send()方法 generator.send(value) Resumes the execution, and "sends&qu ...

  5. 十二. Python基础(12)--生成器

    十二. Python基础(12)--生成器 1 ● 可迭代对象(iterable) An object capable of returning its members one at a time. ...

  6. python函数-迭代器&生成器

    python函数-迭代器&生成器 一.迭代器 1 可迭代协议 迭代:就是类似for循环,将某个数据集内的数据可以“一个挨着一个取出来” 可迭代协议: ① 协议内容:内部实现__iter__方法 ...

  7. python基础--迭代器、生成器

    (1)迭代器 可迭代对象和迭代器的解释如下: ''' 什么是对象?Python中一切皆对象,之前我们讲过的一个变量,一个列表,一个字符串,文件句柄,函数名等等都可称作一个对象,其实一个对象就是一个实例 ...

  8. 【python】迭代器&生成器

    源Link:http://www.cnblogs.com/huxi/archive/2011/07/01/2095931.html 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素 ...

  9. python基础-迭代器和生成器

    一.递归和迭代 1.递归:(问路示例) 递归算法是一种直接或者间接地调用自身算法的过程.在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解. 2.迭代:简单理 ...

随机推荐

  1. 记一次 .NET 某消防物联网 后台服务 内存泄漏分析

    一:背景 1. 讲故事 去年十月份有位朋友从微信找到我,说他的程序内存要炸掉了...截图如下: 时间有点久,图片都被清理了,不过有点讽刺的是,自己的程序本身就是做监控的,结果自己出了问题,太尴尬了 二 ...

  2. 为什么重写equals的同时要重写hashcode

    在覆盖equals方法的时候,你必须要遵守它的通用约定.下面是约定的内容,来自Object的规范[JavaSE6] 自反性.对于任何非null的引用值x,x.equals(x)必须返回true. 对称 ...

  3. element ui table 表格排序

    实现elementui表格的排序 1:给table加上sort-change,给table每一项加上sortable和column-key,排序是根据column-key来进行排序的 <el-t ...

  4. Centos下安装Scala(2)

    1.下载压缩包 命令:wget https://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz 2.解压缩包 命令:tar -xzvf sc ...

  5. sqoop如何指定pg库的模式

    摘要:sqoop如何指定pg库的模式? 本文分享自华为云社区<[Hadoop]关于Sqoop导出数据到postgresql时schema的设置问题>,作者:Copy工程师 . 说明 使用s ...

  6. Android开发----开发工具的安装与TextView组件

    开发工具的安装 选择使用Android Studio进行开发,Android Studio 是谷歌推出的一个Android集成开发工具,基于IntelliJ IDEA. 类似 Eclipse ADT, ...

  7. 什么是协程(第三方模块gevent--内置模块asyncio)

    目录 一:协程 1.什么是协程? 2.携程的作用? 3.安装第三方模块:在命令行下 二:greenlet模块(初级模块,实现了保存状态加切换) 三: gevent模块(协程模块) 1.time 模式协 ...

  8. Kubernetes的Pod进阶(十一)

    一.Lifecycle 官网:https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/ 通过前面的分享,关于pod是什么相信看 ...

  9. 将项目上传至GitHub

    前言: 前段时间我将自己做的2040小游戏从本地上传至了GitHub上,本篇将记录上传过程与方法 我的2048小游戏GitHub仓库链接226YZY/my2048game: 我的简易2048小游戏 ( ...

  10. java解洛谷P1011车站问题

    车站每站的上车人数,下车人数,剩余人数都组成了斐波那契数列 此代码只计算了剩余人数的情况,所以在输入需要总站数量时会-1取上一站的剩余人数 (最后一站会全部下车,没有上车人数) 每一站的剩余人数都可以 ...