Solution -「JLOI 2015」「洛谷 P3262」战争调度
\(\mathcal{Description}\)
Link.
给定一棵 \(n\) 层的完全二叉树,你把每个结点染成黑色或白色,满足黑色叶子个数不超过 \(m\)。对于一个叶子 \(u\),若其 \(k\) 级父亲与其同为黑色,则对答案贡献 \(a_{uk}\);若同为白色,则对答案贡献 \(b_{uk}\)。求最大贡献和。
\(n\le10\)。
\(\mathcal{Solution}\)
想要 DP,比如令 \(f(u,i)\) 表示 \(u\) 子树内有 \(i\) 个叶子为黑色时的最大贡献和。但发现这根本没法转移 qwq。
那……爆搜呢?
从上往下搜索,直接钦定当前非叶结点是黑是白,搜到叶子时,在向上计算当前叶子是黑色/白色时的贡献,回溯时简单背包。复杂度 \(\mathcal O(n4^n)\),可过欸!
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 10;
int n, m, a[1 << MAXN | 5][MAXN + 5], b[1 << MAXN | 5][MAXN + 5];
int f[1 << MAXN | 5][1 << MAXN | 5];
bool fight[1 << MAXN | 5];
inline void chkmax ( int& a, const int b ) { a < b && ( a = b, 0 ); }
inline void solve ( const int u, const int d ) {
for ( int i = 0; i <= 1 << d; ++ i ) f[u][i] = 0;
if ( !d ) {
for ( int i = 1; i <= n; ++ i ) {
if ( fight[u >> i] ) f[u][1] += a[u][i];
else f[u][0] += b[u][i];
}
} else {
for ( int k = 0; k <= 1; ++ k ) {
fight[u] = k;
solve ( u << 1, d - 1 ), solve ( u << 1 | 1, d - 1 );
for ( int i = 0; i <= 1 << d >> 1; ++ i ) {
for ( int j = 0; j <= 1 << d >> 1; ++ j ) {
chkmax ( f[u][i + j], f[u << 1][i] + f[u << 1 | 1][j] );
}
}
}
}
}
int main () {
scanf ( "%d %d", &n, &m ), -- n;
for ( int i = 0; i < 1 << n; ++ i ) {
for ( int j = 1; j <= n; ++ j ) {
scanf ( "%d", &a[( 1 << n ) + i][j] );
}
}
for ( int i = 0; i < 1 << n; ++ i ) {
for ( int j = 1; j <= n; ++ j ) {
scanf ( "%d", &b[( 1 << n ) + i][j] );
}
}
solve ( 1, n );
int ans = 0;
for ( int i = 0; i <= m; ++ i ) chkmax ( ans, f[1][i] );
printf ( "%d\n", ans );
return 0;
}
Solution -「JLOI 2015」「洛谷 P3262」战争调度的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
随机推荐
- WSL与gnome-desktop
WSL与gome-desktop 经过测试和检索 确定WSL1无法在gome-desktop实现GUI桌面 只能实现其中应用的现实,比如打开记事本在Xserver https://www.reddit ...
- VS IDE之xml过大报错
语料处理时遇到这个错误 在命令行中输入 $vsWherePath = Join-Path ${env:ProgramFiles(x86)} "Microsoft Visual Studio\ ...
- centos下APUE 例程编译-解决报错与改写例子名字。
首先是编译生成libapue.a的库文件.按照readme的说法很简单改个目录make一下就好,但是在centos下还是有错.通过下面这篇博文<<UNIX环境高级编程中的apue.h错误& ...
- gin框架中多种数据格式返回请求结果
返回四种格式的数据:1. []byte.string 2. json格式 3. html模板渲染 4. 静态资源设置 package main import ( "github.com ...
- golang中的接口值
package main import ( "bytes" "fmt" "io" ) // 此处的w参数默认是一个空接口,当传递进来buf参 ...
- 1.kafka
什么是Kafka 1.Apache Kafka是一个开源消息系统,由Scala写成. 2.Kafka是一个分布式消息队列.Kafka对消息保存时根据Topic进行归类,发送消息者称为Producer ...
- java 中的多线程简单介绍
package com.zxf.demo; /* * 多线程的实现方式两种? * 一..实现 runnable 接口 * 2.重写run方法 Run():当一个线程启动后,就会自动执行该方法 * 3. ...
- 如何在 pyqt 中解决国际化 tr() 函数不起作用的问题
前言 有些时候我们在父类中使用了 self.tr('XXX'),使用 Qt Linguist 完成翻译并导出 qm 文件后,发现子类中仍然是英文原文.比如下面这段代码: class AlbumCard ...
- Datawhale 人工智能培养方案
版本号:V0.9 阅读须知 每个专业方向对应一个课程表格 课程表格里的课程排列顺序即为本培养方案推荐的学习顺序 诚挚欢迎为本培养方案贡献课程,有意向的同学请联系Datawhale开源项目管理委员会 本 ...
- 浅谈C#可变参数params
前言 前几天在群里看到群友写了一个基础框架,其中设计到关于同一个词语可以添加多个近义词的一个场景.当时群友的设计是类似字典的设计,直接添加k-v的操作,本人看到后思考了一下觉得使用c#中的params ...