Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12703   Accepted: 5403

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2
题意:给你n个点,n-1条边形成一颗棵树,然后让你找树的重心;
思路:树形dp;
先dfs求出每个点所形成的子树的权值,然后再dfs求权值中的最大值更新dp。因为当前点的各个子树的权值都知道,那么只要求出当前节点父亲节点的权值,nod-sum[n];
复杂度O(n);
 1 #include<stdio.h>
2 #include<math.h>
3 #include<queue>
4 #include<algorithm>
5 #include<string.h>
6 #include<iostream>
7 #include<stack>
8 #include<vector>
9 using namespace std;
10 typedef long long LL;
11 vector<int>vec[20005];
12 int dp[20005];
13 bool flag[20005];
14 int sum[20005];
15 void dfs(int n);
16 void dfs2(int n);
17 int nod;
18 int main(void)
19 {
20 int t;
21 scanf("%d",&t);
22 while(t--)
23 {
24 int n;
25 scanf("%d",&nod);
26 n = nod;
27 for(int i = 0;i < 20005;i++)
28 vec[i].clear();
29 for(int i = 0; i < n-1; i++)
30 {
31 int a,b;
32 scanf("%d %d",&a,&b);
33 vec[a].push_back(b);
34 vec[b].push_back(a);
35 }
36 memset(flag,0,sizeof(flag));
37 memset(dp,0,sizeof(dp));
38 memset(sum,0,sizeof(sum));
39 dfs(1);
40 memset(flag,0,sizeof(flag));
41 dfs2(1);
42 int id = 0;
43 int maxx = 1e9;
44 for(int i = 1; i <= n; i++)
45 {
46 if(maxx > dp[i])
47 maxx = dp[i],id = i;
48 }
49 printf("%d %d\n",id,maxx);
50 }
51 return 0;
52 }
53 void dfs(int n)
54 {
55 int i,j;
56 flag[n] = true;
57 for(i = 0; i < vec[n].size(); i++)
58 {
59 int id = vec[n][i];
60 if(!flag[id])
61 {
62 dfs(id);
63 sum[n]+=sum[id];
64 }
65 }
66 sum[n]++;
67 }
68 void dfs2(int n)
69 {
70 flag[n] = true;
71 int i,j;
72 for(i = 0; i < vec[n].size(); i++)
73 {
74 int id = vec[n][i];
75 if(!flag[id])
76 {
77 dp[n] = max(dp[n],sum[id]);
78 dfs2(id);
79 }
80 }
81 dp[n] = max(dp[n],nod-sum[n]);
82 }

Balancing Act(poj1655)的更多相关文章

  1. 『Balancing Act 树的重心』

    树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...

  2. poj1655 Balancing Act 找树的重心

    http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  3. POJ1655 Balancing Act(树的重心)

    题目链接 Balancing Act 就是求一棵树的重心,然后统计答案. #include <bits/stdc++.h> using namespace std; #define REP ...

  4. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  5. poj1655 Balancing Act (dp? dfs?)

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14247   Accepted: 6026 De ...

  6. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  7. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  8. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  9. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

随机推荐

  1. 汇编LED实验

    汇编语言点亮LED 拿到一款全新的芯片,第一个要做的事情的就是驱动其 GPIO,控制其 GPIO 输出高低电平. GPIO口是IO口的一个功能之一. 一.接下来的步骤离不开芯片手册: 1.使能所有时钟 ...

  2. Prometheus概述

    Prometheus是什么 首先, Prometheus 是一款时序(time series) 数据库, 但他的功能却并非支部与 TSDB , 而是一款设计用于进行目标 (Target) 监控的关键组 ...

  3. IPFS是什么?IPFS原理、IPFS存储

    以下内容调研截止到2021/11/5日 IPFS简介 IPFS是一种内容可寻址.点对点.分布式文件系统.IPFS采用内容-地址寻址技术,即通过文件内容进行检索而不是通过文件的网络地址.简单来说,就是对 ...

  4. 巩固javaweb的第三十一天

    巩固内容 变量的作用范围 如果要访问的信息在 pageScope.requestScope.sessionScope 和 applicationScope 中存储, 则使用表达式语言访问的时候可以直接 ...

  5. [源码解析] PyTorch分布式优化器(1)----基石篇

    [源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...

  6. springcloud - alibaba - 3 - 整合config - 更新完毕

    0.补充 1.需求 如果我有这么一个请求:我想要gitee中的配置改了之后,我程序yml中的配置也可以跟着相应产生变化,利用原生的方式怎么做?一般做法如下: 而有了SpringCloud-alibab ...

  7. 日常Java 2021/11/15

    Applet类 每一个Applet都是java.applet Applet类的子类,基础的Applet类提供了供衍生类调用的方法,以此来得到浏览器上下文的信息和服务.这些方法做了如下事情: 得到App ...

  8. 27.0 linux VM虚拟机IP问题

    我的虚拟机是每次换一个不同的网络,b不同的ip,使用桥接模式就无法连接,就需要重新还原默认设置才行: 第一步:点击虚拟机中的编辑-->虚拟网络编辑器 第二步:点击更改设置以管理员权限进入 第三步 ...

  9. 源码分析-NameServer

    架构设计 消息中间件的设计思路一般是基于主题订阅发布的机制,消息生产者(Producer)发送某一个主题到消息服务器,消息服务器负责将消息持久化存储,消息消费者(Consumer)订阅该兴趣的主题,消 ...

  10. CRLF漏洞浅析

    部分情况下,由于与客户端存在交互,会形成下面的情况 也就是重定向且Location字段可控 如果这个时候,可以向Location字段传点qqgg的东西 形成固定会话 但服务端应该不会存储,因为后端貌似 ...