参考ExtremeSpanningTrees,考虑优化整体二分时求$g_{i}\in \{w_{mid},w_{mid+1}\}$的最优解

首先题目有一个条件似乎没有写出来,是保证$l\le k\le r$的(但并不是特别重要,可能更方便)

可以发现只关心于$k$属于当前考虑的点集中的询问即可,因此每一次层的限制数为$o(m)$(可以通过上面的条件,将区间求并后优化为$o(n)$个)

考虑用线段树来优化建图,具体来说,分为以下几步:

1.将点以及区间离散到点个数长度的区间,来保证复杂度;

2.建两颗线段树,左边的线段树从儿子到父亲,右边的线段树从父亲到儿子(流量inf)

3.每一个点连向左边对应的叶子,右边的叶子连向对应的点,根据权值划分到$S$和$T$

4.对于初始$k$到$[l,r]$的边,对应为$k$在左边的叶子连向右边$[l,r]$对应的log个区间,反之类似

理论时间复杂度为$o(n^{3}\log^{2}n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5005
4 #define ll long long
5 #define oo 0x3f3f3f3f
6 #define vi vector<int>
7 #define L (k<<1)
8 #define R (L+1)
9 struct ji{
10 int nex,to,len;
11 }edge[N<<5];
12 queue<int>q;
13 int n,m,p,l,r,k,lx[N][2],rx[N][2],w[N],v[N],a[N],ans[N];
14 int V,E,leaf[N],head[N<<4],work[N<<4],d[N<<4],vis[N<<4],bl[N];
15 bool cmp(int x,int y){
16 return (bl[x]<bl[y])||(bl[x]==bl[y])&&(x<y);
17 }
18 void add(int x,int y,int z){
19 edge[E].nex=head[x];
20 edge[E].to=y;
21 edge[E].len=z;
22 head[x]=E++;
23 if (E&1)add(y,x,0);
24 }
25 bool bfs(){
26 memset(d,oo,sizeof(d));
27 d[0]=0;
28 q.push(0);
29 while (!q.empty()){
30 int k=q.front();
31 q.pop();
32 for(int i=head[k];i!=-1;i=edge[i].nex)
33 if ((edge[i].len)&&(d[edge[i].to]==oo)){
34 d[edge[i].to]=d[k]+1;
35 q.push(edge[i].to);
36 }
37 }
38 return d[(V<<1)+n+1]<oo;
39 }
40 int dfs(int k,int s){
41 if (k>(V<<1)+n)return s;
42 for(int &i=work[k];i!=-1;i=edge[i].nex)
43 if ((edge[i].len)&&(d[edge[i].to]==d[k]+1)){
44 int p=dfs(edge[i].to,min(s,edge[i].len));
45 if (p){
46 edge[i].len-=p;
47 edge[i^1].len+=p;
48 return p;
49 }
50 }
51 return 0;
52 }
53 void dinic(){
54 while (bfs()){
55 memcpy(work,head,sizeof(work));
56 while (dfs(0,oo));
57 }
58 }
59 void dfs(int k){
60 if (vis[k])return;
61 vis[k]=1;
62 for(int i=head[k];i!=-1;i=edge[i].nex)
63 if (edge[i].len)dfs(edge[i].to);
64 }
65 void build(int k,int l,int r){
66 if (l==r){
67 leaf[l]=k;
68 V=max(V,k);
69 return;
70 }
71 int mid=(l+r>>1);
72 build(L,l,mid);
73 build(R,mid+1,r);
74 }
75 void update(int k,int l,int r,int x,int y,int z,int p){
76 if ((l>y)||(x>r))return;
77 if ((x<=l)&&(r<=y)){
78 if (p)add(k,z+V,oo);
79 else add(z,k+V,oo);
80 return;
81 }
82 int mid=(l+r>>1);
83 update(L,l,mid,x,y,z,p);
84 update(R,mid+1,r,x,y,z,p);
85 }
86 void dfs(int l,int r,int x,int y){
87 if (x==y){
88 for(int i=l;i<=r;i++)ans[a[i]]=v[x];
89 return;
90 }
91 int mid=(x+y>>1);
92 V=E=0;
93 build(1,1,r-l+1);
94 for(int i=0;i<=(V<<1)+n+1;i++)head[i]=-1;
95 for(int i=2;i<=V;i++){
96 add(i,i/2,oo);
97 add(i/2+V,i+V,oo);
98 }
99 for(int i=l;i<=r;i++){//若i比j小则i向j连边,源点连大的,汇点连小的
100 add((V<<1)+i,leaf[i-l+1],oo);
101 add(leaf[i-l+1]+V,(V<<1)+i,oo);
102 if (w[a[i]]>=v[mid+1])add(0,(V<<1)+i,1);
103 else add((V<<1)+i,(V<<1)+n+1,1);
104 }
105 for(int i=l;i<=r;i++)
106 for(int j=0;j<2;j++){
107 int x=lx[a[i]][j],y=rx[a[i]][j];
108 int wx=lower_bound(a+l,a+r+1,x)-a-l+1,wy=upper_bound(a+l,a+r+1,y)-a-l;
109 if (wx<wy)update(1,1,r-l+1,wx,wy,leaf[i-l+1],j);
110 }
111 dinic();
112 for(int i=0;i<=(V<<1)+n+1;i++)vis[i]=0;
113 dfs(0);
114 for(int i=l;i<=r;i++){
115 if ((w[a[i]]>=v[mid+1])&&(vis[leaf[i-l+1]])||(w[a[i]]<v[mid+1])&&(vis[leaf[i-l+1]+V]))bl[a[i]]=1;
116 else bl[a[i]]=0;
117 }
118 sort(a+l,a+r+1,cmp);
119 for(int i=l;i<=r+1;i++){
120 if ((bl[a[i]])||(i>r)){
121 if (l<i)dfs(l,i-1,x,mid);
122 if (i<=r)dfs(i,r,mid+1,y);
123 return;
124 }
125 }
126 }
127 int main(){
128 scanf("%d%d",&n,&m);
129 for(int i=1;i<=n;i++)scanf("%d",&w[i]);
130 for(int i=1;i<=n;i++)
131 for(int j=0;j<2;j++)lx[i][j]=rx[i][j]=i;
132 for(int i=1;i<=m;i++){
133 scanf("%d%d%d%d",&p,&l,&r,&k);
134 lx[k][p]=min(lx[k][p],l);
135 rx[k][p]=max(rx[k][p],r);
136 }
137 memcpy(v,w,sizeof(v));
138 sort(v+1,v+n+1);
139 int nn=unique(v+1,v+n+1)-v-1;
140 for(int i=1;i<=n;i++)a[i]=i;
141 dfs(1,n,1,nn);
142 long long sum=0;
143 for(int i=1;i<=n;i++)sum+=abs(ans[i]-w[i]);
144 for(int i=1;i<=n;i++){
145 for(int j=lx[i][0];j<=rx[i][0];j++)assert(ans[j]>=ans[i]);
146 for(int j=lx[i][1];j<=rx[i][1];j++)assert(ans[j]<=ans[i]);
147 }
148 printf("%lld",sum);
149 }

[loj6518]序列的更多相关文章

  1. 【夯实PHP基础】UML序列图总结

    原文地址 序列图主要用于展示对象之间交互的顺序. 序列图将交互关系表示为一个二维图.纵向是时间轴,时间沿竖线向下延伸.横向轴代表了在协作中各独立对象的类元角色.类元角色用生命线表示.当对象存在时,角色 ...

  2. Windows10-UWP中设备序列显示不同XAML的三种方式[3]

    阅读目录: 概述 DeviceFamily-Type文件夹 DeviceFamily-Type扩展 InitializeComponent重载 结论 概述 Windows10-UWP(Universa ...

  3. 软件工程里的UML序列图的概念和总结

    俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习! 软件工程的一般开发过程:愿景分析.业务建模,需求分析,健壮性设计,关键设计,最终设计,实现…… 时序图也叫序列图(交互图),属于软件 ...

  4. python序列,字典备忘

    初识python备忘: 序列:列表,字符串,元组len(d),d[id],del d[id],data in d函数:cmp(x,y),len(seq),list(seq)根据字符串创建列表,max( ...

  5. BZOJ 1251: 序列终结者 [splay]

    1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3778  Solved: 1583[Submit][Status][Discu ...

  6. 最长不下降序列nlogn算法

    显然n方算法在比赛中是没有什么用的(不会这么容易就过的),所以nlogn的算法尤为重要. 分析: 开2个数组,一个a记原数,f[k]表示长度为f的不下降子序列末尾元素的最小值,tot表示当前已知的最长 ...

  7. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  8. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

  9. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

随机推荐

  1. a标签刷新当前页面

    <a href="javascript:location.reload();">刷新页面</a>

  2. Centos7 python3环境搭建 兼容python2.7

    Centos7 python3环境搭建 兼容python2.7 安装前提依赖 yum install openssl-devel bzip2-devel expat-devel gdbm-devel ...

  3. JavaScript05

    显示和隐藏 元素的显示和隐藏 元素display属性可控制元素的显示和隐藏,先获取元素对象,再通过点语法调用style对象中的display属性 语法格式: 元素.style.display='non ...

  4. noj加1乘2平方

    广度优先搜索典例 00 题目 描述: 最简单的队列的使用#include <iostream>#include <queue>using namespace std;queue ...

  5. 如果你还不知道Apache Zookeeper?你凭什么拿大厂Offer!!

    很多同学或多或少都用到了Zookeeper,并知道它能实现两个功能 配置中心,实现表分片规则的统一配置管理 注册中心,实现sharding-proxy节点的服务地址注册 那么Zookeeper到底是什 ...

  6. nsq - 一条消息的生命周期(一)

    经过前面几篇的学习,相信大家对nsq已经有了一个大概的了解,我在写这篇文章的时候也看了很多其他人写的教程,发现大家对于分析系统每个点写的很不错,但是都很少有整体串起来一起走一遍,所以,我打算分成2-3 ...

  7. Go 语言实现 gRPC 的发布订阅模式,REST 接口和超时控制

    原文链接: 测试小姐姐问我 gRPC 怎么用,我直接把这篇文章甩给了她 上篇文章 gRPC,爆赞 直接爆了,内容主要包括:简单的 gRPC 服务,流处理模式,验证器,Token 认证和证书认证. 在多 ...

  8. [Beta]the Agiles Scrum Meeting 12

    会议时间:2020.5.27 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 issue yjy 帮助解决技术问题 tq 撰写技术博客 wjx 博客评分界面美化 dzx 博客评分界 ...

  9. CSS 奇技淫巧 | 巧妙实现文字二次加粗再加边框

    本文将通过一个实际的业务需求,讲解如何实现 极端场景下文字加粗加边框效果 文字多重边框的效果 需求背景 - 文字的二次加粗 今天遇到这样一个有意思的问题: 在文字展示的时候,利用了 font-weig ...

  10. 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链

    luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...