[cf1515G]Phoenix and Odometers
显然这条路径只能在$v_{i}$所在的强连通分量内部,不妨仅考虑这个强连通分量
对这个强连通分量dfs,得到一棵外向树(不妨以1为根)
考虑一条边$(u,v,l)$,由于强连通,总存在一条从$v$到$u$的路径,经过这条路径$t_{i}$次,再经过$u$到$v$这条边$t_{i}-1$次,即从$v$到达了$u$,且总边权$\equiv -l(mod\ t_{i})$
由此,不妨将$(v,u,-l)$也作为一条边加入图中,显然不影响(以下称这条边为$(u,v,l)$的反向边)
此时,令$dep_{x}$为1通过树边走到$x$的权值和,那么从$x$到$y$通过树边及其反向边的最短路,权值和即
$$
(dep_{lca(x,y)}-dep_{x})+(dep_{y}-dep_{lca(x,y)})=dep_{y}-dep_{x}
$$
显然若没有非树边,从$x$到$y$的任意一条路径(之前仅考虑最短路)权值和都为$dep_{y}-dep_{x}$(显然每一条边都是最短路,前后项相消即可)
考虑非树边$(u,v,l)$,若从$x$到$y$的路径每经过一次$(u,v,l)$,实际上即让边权和加$l-(dep_{v}-dep_{u})$,最后统计所有非树边的贡献和即为总边权和
另一方面,我们显然可以经过每一条非树边任意次
由此,对每一条非树边$(u,v,l)$求出$l-(dep_{v}-dep_{u})$,假设依次为$a_{1},a_{2},...,a_{s}$,问题即判定是否存在一组解$x_{i}\in N$,使得$\sum_{j=1}^{s}x_{j}a_{j}\equiv -s_{i}(mod\ t_{i})$
根据数论知识,这显然等价于$\gcd(\gcd_{i=1}^{s}a_{i},t_{i})\mid s_{i}$,判定即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 struct Edge{
6 int nex,to,len;
7 }edge[N<<1];
8 int E,n,m,q,x,y,z,scc,head[N],head_rev[N],dfn[N],vis[N],bl[N];
9 ll dep[N],ans[N];
10 ll gcd(ll x,ll y){
11 if (!y)return x;
12 return gcd(y,x%y);
13 }
14 void add(int x,int y,int z){
15 edge[E].nex=head[x];
16 edge[E].to=y;
17 edge[E].len=z;
18 head[x]=E++;
19 }
20 void add_rev(int x,int y,int z){
21 edge[E].nex=head_rev[x];
22 edge[E].to=y;
23 edge[E].len=z;
24 head_rev[x]=E++;
25 }
26 void dfs1(int k){
27 if (vis[k])return;
28 vis[k]=1;
29 for(int i=head[k];i!=-1;i=edge[i].nex)dfs1(edge[i].to);
30 dfn[++dfn[0]]=k;
31 }
32 void dfs2(int k,ll s){
33 if (bl[k])return;
34 bl[k]=scc;
35 dep[k]=s;
36 for(int i=head_rev[k];i!=-1;i=edge[i].nex)dfs2(edge[i].to,s+edge[i].len);
37 }
38 int main(){
39 scanf("%d%d",&n,&m);
40 memset(head,-1,sizeof(head));
41 memset(head_rev,-1,sizeof(head_rev));
42 for(int i=1;i<=m;i++){
43 scanf("%d%d%d",&x,&y,&z);
44 add(x,y,z);
45 add_rev(y,x,z);
46 }
47 for(int i=1;i<=n;i++)
48 if (!vis[i])dfs1(i);
49 for(int i=n;i;i--)
50 if (!bl[dfn[i]]){
51 scc++;
52 dfs2(dfn[i],0);
53 }
54 for(int x=1;x<=n;x++)
55 for(int j=head[x];j!=-1;j=edge[j].nex){
56 y=edge[j].to,z=edge[j].len;
57 if (bl[x]==bl[y])ans[bl[x]]=gcd(ans[bl[x]],z-(dep[x]-dep[y]));
58 }
59 scanf("%d",&q);
60 for(int i=1;i<=q;i++){
61 scanf("%d%d%d",&x,&y,&z);
62 if (y%gcd(ans[bl[x]],z)==0)printf("YES\n");
63 else printf("NO\n");
64 }
65 }
[cf1515G]Phoenix and Odometers的更多相关文章
- Phoenix综述(史上最全Phoenix中文文档)
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/users/6cb45a00b49c/latest_articles 网上关于P ...
- 在DBeaver中phoenix查询报错:org.apache.phoenix.exception.PhoenixIOException: The system cannot find the path specified
环境:Phoenix:4.4,win7系统 问题:Phoenix在查询hbase时,报"系统找不到指定路径". 解决: 请参见 https://distcp.quora.com/C ...
- HBase+Phoenix整合入门--集群搭建
环境:CentOS 6.6 64位 hbase 1.1.15 phoenix-4.7.0-HBase-1.1 一.前置环境: 已经安装配置好Hadoop 2.6和jdk 1.7 二.安装hba ...
- SQL Server恢复软件 Stellar Phoenix sql recovery
SQL Server恢复软件 Stellar Phoenix sql recovery http://www.stellarinfo.com/ http://www.stellarinfo.com/ ...
- Hbase+ Phoenix搭建教程
Hbase+ Phoenix搭建教程 一.Hbase简介 HBase是基于列存储.构建在HDFS上的分布式存储系统,其主要功能是存储海量结构化数据. HBase构建在HDFS之上,因此HBase也是通 ...
- CDH5.4.5运行Phoenix导入CSV文件
1.安装phoenix 在界面上设置Phoenix的parcel包: http://52.11.56.155:7180/cmf/settings?groupKey=config.scm.parcel. ...
- Phoenix -修复表索引
索引的修复可以通过2种方式,(关于pehoenix的索引的生命周期可以参考 https://community.hortonworks.com/articles/58818/phoenix-inde ...
- phoenix将hdfs数据导入hbase
http://phoenix.apache.org/bulk_dataload.html
- phoenix 开发API系列 目录
phoenix 开发API系列(一)创建简单的http api phoenix 开发API系列(二)phoenix 各类 api 实现方式 phoenix 开发API系列(三)phoenix api ...
随机推荐
- Spring 框架学习
转载自前辈:我没有三个新脏 Spring学习(1)--快速入门 认识 Spring 框架 Spring 框架是 Java 应用最广的框架,它的成功来源于理念,而不是技术本身,它的理念包括 IoC (I ...
- Perl 编程 基础用法
Perl 编程 标准头部写法 #!/usr/bin/perl -w # 标准的头部写法,-w意为显示警告 变量 $a=$b+10 # $a和$b都不需要定义,拿过来就用 Note: $flag=0 如 ...
- UE4蓝图AI角色制作(四)之Gameplay调试器
8. 寻路网格体和Gameplay调试器 为了及时识别出AI系统中的导航问题,UE4提供了一个工具用来解决这类问题,它叫Gameplay调试器.打开项目设置,在左侧找到"引擎",然 ...
- 安装多个版本的MySQL
安装多个版本的MySQL 之前在PC机上安装了 MySQL 5.5 后续发现了窗口函数,而窗口函数是 MySQL8 以后才支持的,故在本地又安装了一个 MySQL 8 安装MySQL 5.5 进入my ...
- UltraSoft - Alpha - 测试报告
遇到的bug bug:在vue.config.js里配置proxy,并修改请求的url后仍无法连接到后端. 解决: url最后忘了'/',导致和后端不匹配,会有404.500等错误. 后端服务未打开或 ...
- 热身训练1 Calculator
题目出处:Calculator 简要题意: 你有一个确定的函数,f(x)=+...*...^...,其中共有n个操作,从左到右依次计算. 共有m次询问,我们每次询问,1.会修改f(x)中的操作:2.输 ...
- 单片机STM32开发中常用库函数分析
1.GPIO初始化函数 用法: voidGPIO_Configuration(void) { GPIO_InitTypeDefGPIO_InitStructure;//GPIO状态恢复默认参数 GPI ...
- 如何抓取直播源及视频URL地址-疯狂URL(教程)
直播源介绍 首先,我们来快速了解一下什么是直播源,所谓的直播源,其实就说推流地址,推流地址可能你也不知道是什么,那么我再简单说一下,推流地址就是,当某个直播开播的时候,需要将自己的直播状态实时的展示给 ...
- 🔥完美解决ESlint+Prettier各项配置冲突的语法报错问题(新手向)
本文重点: 1.解决修改了Prettier默认配置,项目内格式化无法生效 2.解决Prettier缺少配置,函数名和括号之间,自动添加空格 3.settings.json配置项分享 一个程序员,可能非 ...
- 『动善时』JMeter基础 — 57、Linux系统中运行JMeter脚本
目录 1.Linux系统中安装Java环境 (1)解压Java安装包 (2)配置Java环境变量 (3)验证Java环境是否配置成功 2.Linux系统中安装JMeter (1)下载JMeter (2 ...