原题等价于选择恰好$k+1$条不相交(无公共点)的路径使得边权和最大
证明:对于原题中的最优解,一定包含了k条0边权的边(否则可以将未使用的边删掉,然后将这条路径的末尾与不在同一个连通块内的点连边),那么选择这k条0边权的边所划分的$k+1$条路径即可;对于这$k+1$条路径,将每一条路径首尾连0边权的边,由于这些0边权的边和选择的边无法构成环,因此一定可以删除k条为选择的非0边使其变成一棵树,即原题中的操作
然后令$f(k)$表示选择了恰好k条路径的答案,那么有对于$\forall 1\le i<n$,都有$2f(i)\ge f(i-1)+f(i+1)$,即$f(i)-f(i-1)\ge f(i+1)-f(i)$
证明:建立一张费用流的图:S->i(1,0);i->i'(1,0);i'->T(1,0);i'->j(1,v(i,j))。容易发现$f(x)= 流量为x的最大费用$,由于费用流存在凸性,所以f也存在凸性
根据凸性二分即可,即二分$f(i)-f(i-1)\ge k$,考虑判定:将每条路径权值减去k并选择任意条路径使得权值和最大,那么最后即求出了$f(i)-ki$(特殊情况:$f(k+1)-f(k)=……=f(k+i)-f(k+i-1)$,那么只可以找到$f(k+i)$和$f(k)$,根据等式求出$f(k+1)$即可)
具体的树形dp:用$f[i][j=0/1/2]$表示以i为根的子树选择的端点包含i的边数j,转移分类讨论即可(注意:根据二分的过程,我们要选择尽量多的路径,因此还要记录对应的路径数量,可以用结构体来转移) 
 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define oo 1e12
5 #define ll long long
6 #define pli pair<ll,int>
7 #define fi first
8 #define se second
9 #define mx(k) max(f[k][0],max(f[k][1],f[k][2]))
10 int E,n,m,k,x,y,z,head[N];
11 pli o,f[N][3];
12 struct ji{
13 int nex,to,len;
14 }edge[N<<1];
15 pli add(pli x,pli y){
16 return make_pair(x.fi+y.fi,x.se+y.se);
17 }
18 void add(int x,int y,int z){
19 edge[E].nex=head[x];
20 edge[E].to=y;
21 edge[E].len=z;
22 head[x]=E++;
23 }
24 void dfs(int k,int fa,ll v){
25 f[k][0]=make_pair(0,0);
26 f[k][1]=f[k][2]=make_pair(-v,1);
27 for(int i=head[k];i!=-1;i=edge[i].nex)
28 if (edge[i].to!=fa){
29 int u=edge[i].to;
30 dfs(u,k,v);
31 memcpy(f[0],f[k],sizeof(f[0]));
32 for(int j=0;j<3;j++)f[k][j]=add(f[k][j],mx(u));
33 f[k][1]=max(f[k][1],add(add(f[0][0],f[u][1]),make_pair(edge[i].len,0)));
34 f[k][2]=max(f[k][2],add(add(f[0][1],f[u][1]),make_pair(edge[i].len+v,-1)));
35 }
36 }
37 pli pd(ll k){
38 dfs(1,0,k);
39 return mx(1);
40 }
41 int main(){
42 scanf("%d%d",&n,&m);
43 m++;
44 memset(head,-1,sizeof(head));
45 for(int i=1;i<n;i++){
46 scanf("%d%d%d",&x,&y,&z);
47 add(x,y,z);
48 add(y,x,z);
49 }
50 ll l=-oo,r=oo;
51 while (l<r){
52 ll mid=(l+r+1>>1);
53 if (pd(mid).se>=m)l=mid;
54 else r=mid-1;
55 }
56 o=pd(l-1);
57 printf("%lld",o.fi+o.se*(l-1)+l*(m-o.se));
58 }

[loj2478]林克卡特树的更多相关文章

  1. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  2. [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树

    [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...

  3. 【BZOJ5252】林克卡特树(动态规划,凸优化)

    [BZOJ5252]林克卡特树(动态规划,凸优化) 题面 BZOJ(交不了) 洛谷 题解 这个东西显然是随着断开的越来越多,收益增长速度渐渐放慢. 所以可以凸优化. 考虑一个和\(k\)相关的\(dp ...

  4. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

  5. P4383 [八省联考2018]林克卡特树 树形dp Wqs二分

    LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...

  6. luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)

    luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...

  7. 【HEOI 2018】Day2 T2 林克卡特树

    题目大意: 给一个n个节点的树,然后将其分成k+1个联通块,再在每个联通块取一条路径,将其连接起来,求连接起来的路径最大权值. 题解: 考场只会20分,还都打挂了…… 60分的做法其实并不难,nk D ...

  8. bzoj5252 [2018多省省队联测]林克卡特树

    斜率优化树形dp?? 我们先将问题转化成在树上选K+1条互不相交路径,使其权值和最大. 然后我们考虑60分的dp,直接维护每个点子树内选了几条路径,然后该点和0/1/2条路径相连 然后我们会发现最后的 ...

  9. BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)

    假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...

随机推荐

  1. 前段---css

    css主要是用来做如何显示html元素的 当浏览器读到一个样式表,它就会按照这个样式表来对文档做渲染 注意:每一个css样式表都是由两个部分组成的, 1,选择器 2,声明 声明又包括属性值和属性,每个 ...

  2. cf1082D Maximum Diameter Graph(构造+模拟+细节)

    QWQ不得不说 \(cf\)的\(edu\ round\)出这种东西 有点太恶心了 题目大意:给你\(n\)个点,告诉你每个点的最大度数值(也就是说你的度数要小于等于这个),让你构造一个无向图,使其满 ...

  3. 实战-快手H5字体反爬

    实战-快手H5字体反爬 前言 快手H5端的粉丝数是字体反爬,抓到的html文本是乱码 <SPAN STYLE='FONT-FAMILY: kwaiFont;'></SPA ...

  4. .net 5.0 ref文件夹的作用

    ref目录里的dll是一个名为参考组件的东西,微软MSDN给的解释是 参考组件是一种特殊类型的程序集,仅包含表示库的公共API面所需的最小元数据数量.它们包括用于在构建工具中引用程序集时重要的所有成员 ...

  5. 【二食堂】Beta - Scrum Meeting 12

    Scrum Meeting 12 例会时间:5.27 20:00~20:10 进度情况 组员 当前进度 今日任务 李健 1. 知识图谱导出功能完成 issue 1. 继续完成文本保存的工作 issue ...

  6. git常用的一些简单命令

    1.如果一个文件被修改了,但是还没有使用 git add 命令,此时想取消这次修改,需要执行的命令如下: git checkout -- 文件名 2.如果一个文件执行了 git add ,此时想取消这 ...

  7. spring security整合QQ登录

    最近在了解第三方登录的内容,尝试对接了一下QQ登录,此次记录一下如何实现QQ登录的过程,在这个例子中是和spring secuirty整合的,不整合spring secuirty也是一样的. 需求: ...

  8. Noip模拟71 2021.10.7

    T1 签到题 结论题,找到规律就会做 规律是每个点的度数$\mod$颜色种数,如果不是$0$则贡献一个答案 1 #include<bits/stdc++.h> 2 #define int ...

  9. 单片机stm32串口分析

    stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...

  10. 攻防世界 杂项 4.something_in_image

    这是原题 我这里使用编辑器打开,一看乱码也挺多的,于是想了想ctrl+f搜索一下flag关键字吧,结果答案出来了(flag不少,多搜索几次) Flag{yc4pl0fvjs2k1t7T}