Codeforces 286E - Ladies' Shop(FFT)
好久没刷过 FFT/NTT 的题了,写篇题解罢(
首先考虑什么样的集合 \(T\) 符合条件。我们考察一个 \(x\in S\),根据题意它能够表示成若干个 \(\in T\) 的数之和,这样一来我们可以分出两种情况,如果 \(x\) 本来就属于 \(T\),那么 \(x\) 自然就符合条件,这种情况我们暂且忽略不管。否则根据题设,必然存在一个数列 \(b_1,b_2,\cdots,b_m\),满足 \(m\ge 2,\forall i\in[1,m],b_i\in T\),且 \(\sum\limits_{i=1}^mb_i=x\)。由于 \(m\ge 2\),我们可以将第一项与后面 \(m-1\) 项分开来,即 \(b_1+\sum\limits_{i=2}^mb_i\)。根据题意前两个应当都 \(\in S\),也就是说如果一个数 \(x\) 可以表示成两个及以上的 \(T\) 中的数的和的必要条件是 \(\exists y,z\in S,s.t.y+z=x\),因此我们假设 \(S'\) 为可以表示成两个 \(S\) 中元素之和的 \(x\) 组成的集合,那么考虑分以下几种情况考虑:
- 如果存在一个 \(x\in S'\) 但不属于 \(S\),那么根据题意可知 \(x\) 也应当可以被 \(T\) 中元素表示出来,与条件不符。
- 如果不存在属于 \(S'\) 但不属于 \(S\) 的 \(S\),那么我们考虑 \(T=\{x|x\notin S',x\in S\}\),那么 \(T\) 即为所求。为什么呢?首先显然所有 \(x\in S',x\in S\) 的数必须都属于 \(T\),因为根据之前的分析,所有可以表示成两个即以上 \(T\) 中数的和的数都应当 \(\in S'\)。其次对于所有可以表示成两个及以上的数的 \(x\),也就是每个集合中的 \(x\),学过线性代数那一套理论的同学应该明白,删掉这样的 \(x\) 是不影响集合所有数能拼出的数的集合的,这样反复进行下去即可将 \(S'\) 删空,剩余的部分就是集合 \(T\) 了。因此集合 \(T\) 符合条件。
那么怎么求 \(S'\) 呢?其实非常 trivial()考虑幂级数 \(A(x)=\sum\limits_{i=1}^nx^{a_i}\),那么 \(S'\) 即为 \(A^2(x)\) 中系数非零且 \(\le m\) 的项组成的集合。FFT 求出即可。
时间复杂度 \(m\log m\)
const int MAXN=1e6;
const int MAXP=1<<21;
const double Pi=acos(-1);
int n,m,a[MAXN+5];
struct comp{
double x,y;
comp(double _x=0,double _y=0):x(_x),y(_y){}
comp operator +(const comp &rhs){return comp(x+rhs.x,y+rhs.y);}
comp operator -(const comp &rhs){return comp(x-rhs.x,y-rhs.y);}
comp operator *(const comp &rhs){return comp(x*rhs.x-y*rhs.y,x*rhs.y+y*rhs.x);}
} A[MAXP+5];
int rev[MAXP+5],LEN=1;
void FFT(comp *a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
comp W(cos(2*Pi/i),type*sin(2*Pi/i));
for(int j=0;j<len;j+=i){
comp w(1,0);
for(int k=0;k<(i>>1);k++,w=w*W){
comp X=a[j+k],Y=a[(i>>1)+j+k]*w;
a[j+k]=X+Y;a[(i>>1)+j+k]=X-Y;
}
}
} if(!~type){
for(int i=0;i<len;i++) a[i].x=(int)(a[i].x/len+0.5);
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1,x;i<=n;i++) scanf("%d",&x),a[x]++;
for(int i=1;i<=m;i++) A[i].x=a[i];
while(LEN<=(m+m)) LEN<<=1;FFT(A,LEN,1);
for(int i=0;i<LEN;i++) A[i]=A[i]*A[i];
FFT(A,LEN,-1);
// for(int i=1,v;i<=m;i++) printf("%d%c",(v=(int)(A[i].x))," \n"[i==m]);
for(int i=1,v;i<=m;i++) if((v=(int)(A[i].x))&&!a[i]) return puts("NO"),0;
vector<int> res;
for(int i=1,v;i<=m;i++) if(((v=(int)(A[i].x))>0)^a[i]) res.pb(i);
printf("YES\n%d\n",res.size());
for(int x:res) printf("%d ",x);
return 0;
}
upd on 2021.9.21:真·《好久没刷过》
https://codeforces.ml/contest/1574/problem/F
Codeforces 286E - Ladies' Shop(FFT)的更多相关文章
- codeforces 286 E. Ladies' Shop (FFT)
E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...
- CodeForces 286E Ladies' Shop 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 528D Fuzzy Search(FFT)
题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...
- codeforces 286E Ladies' Shop
题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数. 题目分析: 结论一:选择的若干个数一定在n个数中. 证明:否则的 ...
- 2019.01.26 codeforces 528D. Fuzzy Search(fft)
传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...
- 快速傅里叶(FFT)的快速深度思考
关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在 ...
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- 【BZOJ4827】【HNOI2017】礼物(FFT)
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...
随机推荐
- rocketmq优雅停机往事
1 时间追溯到2018年12月的某一天夜晚,那天我正准备上线一个需求完就回家,刚点下发布按钮,告警就响起,我擦,难道回不了家了?看着报错量只有一两个,断定只是偶发,稳住不要慌. 把剩下的机器发完,又出 ...
- leetcode 5/300 最长回文子串 py
目录 题目说明 方法一:动态规划--状态转移方程 方法二:优化中心扩展算法 题目说明 要看明白求得是什么,最长回文字串是指例如cababa中ababa是最长的,不是求回文的部分aba 方法一:动态规划 ...
- 带你用AVPlayer实现音频和视频播放
项目概述 以下项目是基于AVPlayer的实际运用,实现音频播放.横竖屏视频切换播放.类似抖音的竖屏全屏播放效果. 项目地址:AVPlayerAudioVideo 如果文章和项目对你有帮助,还请给个S ...
- 关于评论区empty。。。
空荡荡的毫无人烟,博主希望路过的小哥哥/小姐姐(几率较小)留下些什么--
- Noip模拟53 2021.9.14
T1 ZYB和售货机 首先这道题有两种做法. 一种是发现每个点都可以先被取到只剩一个,只要收益大于$0$ 然后发现建一个$i->f[i]$的图时出现环,要把它去掉, 那么跑一个$tarjan$枚 ...
- UVM:6.2.3 sequencer 的grab 操作
转载:UVM:6.2.3 sequencer 的grab 操作_tingtang13的博客-CSDN博客 1.grab 比lock 优先级更高. 2.lock 是插到sequencer 仲裁队列的后面 ...
- Android上安装第三方库
在Android sdk中安装预安装第三方的(动态,静态)库,到系统中,方便模块无差别的使用. Android.mk include $(CLEAR_VARS) LOCAL_MODULE_TAGS : ...
- 翻转子串 牛客网 程序员面试金典 C++ Python
反转子串 牛客网 程序员面试金典 C++ Python 题目描述 假定我们都知道非常高效的算法来检查一个单词是否为其他字符串的子串.请将这个算法编写成一个函数,给定两个字符串s1和s2,请编写代码检查 ...
- Spring事务的介绍,以及基于注解@Transactional的声明式事务
前言 事务是一个非常重要的知识点,前面的文章已经有介绍了关于SpringAOP代理的实现过程:事务管理也是AOP的一个重要的功能. 事务的基本介绍 数据库事务特性: 原子性 一致性 隔离性 持久性 事 ...
- docker 简单总结
一.docker 安装 yum 方式在centos和rhce上的安装条件: 要安装Docker引擎,你需要一个维护版本的CentOS 7或8.不支持或测试存档版本.必须启用centos-extras存 ...