使用Relay部署编译ONNX模型
使用Relay部署编译ONNX模型
本文介绍如何使用Relay部署ONNX模型的入门。
首先,必须安装ONNX软件包。
一个快速的解决方案是安装protobuf编译器,然后
pip install onnx --user
或参考官方网站。 https://github.com/onnx/onnx
import onnx
import numpy as np
import tvm
from tvm import te
import tvm.relay as relay
from tvm.contrib.download import download_testdata
加载预训练的ONNX模型
使用的示例超分辨率模型与onnx教程http://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html中的模型完全相同,跳过pytorch模型构建部分,下载保存的onnx模型
model_url = "".join(
[
"https://gist.github.com/zhreshold/",
"bcda4716699ac97ea44f791c24310193/raw/",
"93672b029103648953c4e5ad3ac3aadf346a4cdc/",
"super_resolution_0.2.onnx",
]
)
model_path = download_testdata(model_url, "super_resolution.onnx", module="onnx")
# now you have super_resolution.onnx on disk
onnx_model = onnx.load(model_path)
输出:
File /workspace/.tvm_test_data/onnx/super_resolution.onnx exists, skip.
加载测试图像
一只猫占主导地位的例子!此模型采用尺寸为224x224的单个输入图像,并输出比沿每个轴的输入大3x的缩放图像672x672图像。重新缩放猫咪图像以适合此输入形状,然后转换为YCbCr。然后,超分辨率模型将应用于亮度(Y)通道。
from PIL import Image
img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true"
img_path = download_testdata(img_url, "cat.png", module="data")
img = Image.open(img_path).resize((224, 224))
img_ycbcr = img.convert("YCbCr") # convert to YCbCr
img_y, img_cb, img_cr = img_ycbcr.split()
x = np.array(img_y)[np.newaxis, np.newaxis, :, :]
输出:
File /workspace/.tvm_test_data/data/cat.png exists, skip.
用Relay编译模型
ONNX模型将模型输入值与参数值混合,输入的名称为1。此模型取决于模型,查阅模型的文档,确定完整的输入和参数名称空间。
将形状字典传递给relay.frontend.from_onnx方法,告诉中继哪些ONNX参数是输入,哪些是参数,并提供输入大小的静态定义。
target = "llvm"
input_name = "1"
shape_dict = {input_name: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)
with tvm.transform.PassContext(opt_level=1):
intrp = relay.build_module.create_executor("graph", mod, tvm.cpu(0), target)
输出:
/workspace/docs/../python/tvm/relay/frontend/onnx.py:3132: UserWarning: Mismatched attribute type in ' : kernel_shape'
==> Context: Bad node spec: input: "1" input: "2" output: "11" op_type: "Conv" attribute { name: "kernel_shape" ints: 5 ints: 5 } attribute { name: "strides" ints: 1 ints: 1 } attribute { name: "pads" ints: 2 ints: 2 ints: 2 ints: 2 } attribute { name: "dilations" ints: 1 ints: 1 } attribute { name: "group" i: 1 }
warnings.warn(str(e))
在TVM上执行
dtype = "float32"
tvm_output = intrp.evaluate()(tvm.nd.array(x.astype(dtype)), **params).asnumpy()
显示结果
将输入和输出图像并列放置。亮度通道Y是模型的输出。调整色度通道Cb和Cr的大小,以与简单的双三次算法匹配。然后将图像重新组合并转换回RGB。
from matplotlib import pyplot as plt
out_y = Image.fromarray(np.uint8((tvm_output[0, 0]).clip(0, 255)), mode="L")
out_cb = img_cb.resize(out_y.size, Image.BICUBIC)
out_cr = img_cr.resize(out_y.size, Image.BICUBIC)
result = Image.merge("YCbCr", [out_y, out_cb, out_cr]).convert("RGB")
canvas = np.full((672, 672 * 2, 3), 255)
canvas[0:224, 0:224, :] = np.asarray(img)
canvas[:, 672:, :] = np.asarray(result)
plt.imshow(canvas.astype(np.uint8))
plt.show()
Readme
默认情况下,ONNX根据动态形状定义模型。ONNX导入器在导入时会保留这种动态性,并且编译器会在编译时尝试将模型转换为静态形状。如果失败,则模型中可能仍存在动态操作。并非所有的TVM内核当前都支持动态形状,如果在使用动态内核时遇到错误,在ask.tvm.apache.org上提出问题。
该特定模型是使用较旧版本的ONNX构建的。在导入阶段,ONNX导入程序将运行ONNX验证程序,这可能会引发不匹配的属性类型警告。由于TVM支持许多不同的ONNX版本,中继模型仍然有效。
使用Relay部署编译ONNX模型的更多相关文章
- 编译ONNX模型Compile ONNX Models
编译ONNX模型Compile ONNX Models 本文是一篇介绍如何使用Relay部署ONNX模型的说明. 首先,必须安装ONNX包. 一个快速的解决方案是安装protobuf编译器,然后 pi ...
- TVM部署预定义模型
TVM部署预定义模型 本文通过深度学习框架量化的模型加载到TVM中.预量化的模型导入是在TVM中提供的量化支持之一. 本文演示如何加载和运行由PyTorch,MXNet和TFLite量化的模型.加载后 ...
- 使用protobuf编译onnx.proto过程中的一些问题总结
使用git clone下载protobuf的源代码,然后git checkout到branch2.7.0: 编译protobuf,先在代码顶层目录执行./configure,然后执行make,成功后执 ...
- OpenStack部署的简单模型
记录下看到的openstack部署的简单模型,方便自己以后定位问题 规划网络部署节点为一个controller节点(包含网络节点),两个compute节点.controller节点有3个网卡,分别为e ...
- 区块链学习(四)truffle部署编译智能合约以太坊私有链
前面我们介绍了以太坊私有链的搭建以及多节点私有链网络,这次我们介绍如何使用truffle框架来部署编译智能合约到我们之前搭建的私有链网络中. 搭建环境及需使用的工具:ubuntu18.04 Truf ...
- flask部署深度学习模型
flask部署深度学习模型 作为著名Python web框架之一的Flask,具有简单轻量.灵活.扩展丰富且上手难度低的特点,因此成为了机器学习和深度学习模型上线跑定时任务,提供API的首选框架. 众 ...
- 【推理引擎】ONNX 模型解析
定义模型结构 首先使用 PyTorch 定义一个简单的网络模型: class ConvBnReluBlock(nn.Module): def __init__(self) -> None: su ...
- 使用ML.NET + ASP.NET Core + Docker + Azure Container Instances部署.NET机器学习模型
本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. ...
- 深度学习Tensorflow生产环境部署(下·模型部署篇)
前一篇讲过环境的部署篇,这一次就讲讲从代码角度如何导出pb模型,如何进行服务调用. 1 hello world篇 部署完docker后,如果是cpu环境,可以直接拉取tensorflow/servin ...
随机推荐
- NetCore去注册Eureka
首先先安装nuget组件:Steeltoe.Discovery.ClientCore 然后在ConfigureServices中进行注入 services.AddDiscoveryClient(Con ...
- VScode 使用提示
vscode 配置xdebug参考 vscode配置phpxdebug 未完,待续!
- 编译libdvm.so: makefile,mm
操作系统:Ubuntu14.4 android版本:4.4 设备:nexus 5 android系统的编译使用make来操作,那make呢是执行对应的makefile即android的编译系统看mak ...
- Windows核心编程笔记之进程
改变进程基址,获取进程基址 #include <Windows.h> #include <iostream> #include <strsafe.h> #inclu ...
- IntelliJ IDEA打开Maven项目,Spring boot所有依赖红名,不可用
导入外部的springboot项目时,出现报红线,无论怎么刷新maven就是不下载依赖包,情况如下 解决办法: 1)直接去自己的maven仓库,找到Spring boot,然后直接删除下面的文件 2) ...
- 大学四年因为分享了这些软件测试常用软件,我成了别人眼中的(lei)大神(feng)!
依稀记得,毕业那天,我们辅导员发给我毕业证的时候对我说"你可是咱们系的风云人物啊",哎呀,别提当时多开心啦????,嗯,我们辅导员是所有辅导员中最漂亮的一个,真的???? 不过,辅 ...
- 并发容器-CopyOnWriteArrayList
并发容器一览 图源:https://time.geekbang.org/column/article/90201?utm_term=pc_interstitial_938 CopyOnWriteArr ...
- Mybatis学习之自定义持久层框架(五) 自定义持久层框架:封装CRUD操作
前言 上一篇文章我们完成了生产sqlSession的工作,与数据库的连接和创建会话的工作都已完成,今天我们可以来决定会话的内容了. 封装CRUD操作 首先我们需要创建一个SqlSession接口类,在 ...
- c++debug&注意事项 自用 持续更新
cin后回车程序直接退出: 加system("pause");在return 0;前面 C++ 控制cout输出的小数位数 C++中的cout.setf().cout.precis ...
- 【Azure Developer】使用Microsoft Graph API 如何批量创建用户,用户属性中需要包含自定义字段(如:Store_code,Store_name等)
Microsoft Graph 是 Microsoft 365 中通往数据和智能的网关. 它提供统一的可编程模型,可用于访问 Microsoft 365.Windows 10 和企业移动性 + 安全性 ...