Spark(十七)【SparkStreaming需求练习】
一.环境准备
1.pom文件
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.alibaba/druid -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.1.10</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.10.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 该插件用于将Scala代码编译成class文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<!-- 声明绑定到maven的compile阶段 -->
<goals>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
2.bean
import java.text.SimpleDateFormat
import java.util.Date
//数据格式:1597148289569,华北,北京,102,4,2020-08-11,11:12
case class AdsInfo(ts: Long,
area: String,
city: String,
userId: String,
adsId: String,
var dayString: String = null, // yyyy-MM-dd
var hmString: String = null) { // hh:mm
val date = new Date(ts)
dayString = new SimpleDateFormat("yyyy-MM-dd").format(date)
hmString = new SimpleDateFormat("HH:mm").format(date)
}
3.工具类
JDBCUtils
object JDBCUtil {
// 创建连接池对象
var dataSource:DataSource = init()
// 连接池的初始化
def init():DataSource = {
val paramMap = new java.util.HashMap[String, String]()
paramMap.put("driverClassName", PropertiesUtil.getValue("jdbc.driver.name"))
paramMap.put("url", PropertiesUtil.getValue("jdbc.url"))
paramMap.put("username", PropertiesUtil.getValue("jdbc.user"))
paramMap.put("password", PropertiesUtil.getValue("jdbc.password"))
paramMap.put("maxActive", PropertiesUtil.getValue("jdbc.datasource.size"))
// 使用Druid连接池对象
DruidDataSourceFactory.createDataSource(paramMap)
}
// 从连接池中获取连接对象
def getConnection(): Connection = {
dataSource.getConnection
}
def main(args: Array[String]): Unit = {
println(getConnection())
}
}
Properties工具类
/**
* project.properties文件
*/
#jdbc配置
jdbc.datasource.size=10
jdbc.url=jdbc:mysql://hadoop102:3306/steamingproject?useUnicode=true&characterEncoding=utf8&rewriteBatchedStatements=true
jdbc.user=root
jdbc.password=root
jdbc.driver.name=com.mysql.jdbc.Driver
# Kafka配置
kafka.broker.list=hadoop102:9092,hadoop103:9092,hadoop104:9092
kafka.topic=mytest
kafka.group.id=cg1
import java.util.ResourceBundle
/**
* Properties文件工具类
*/
object PropertiesUtil {
// 绑定配置文件
// ResourceBundle专门用于读取配置文件,所以读取时,不需要增加扩展名
// 国际化 = I18N => Properties
val summer: ResourceBundle = ResourceBundle.getBundle("project")
def getValue( key : String ): String = {
summer.getString(key)
}
def main(args: Array[String]): Unit = {
println(getValue("jdbc.user"))
}
}
3.创建BaseApp
/**
* @description: 基础类
* @author: HaoWu
* @create: 2020年08月11日
*/
abstract class BaseApp {
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("myAPP")
val ssc: StreamingContext = new StreamingContext(conf, Seconds(3))
//设置消费kafka的参数,可以参考kafka.consumer.ConsumerConfig类中配置说明
val kafkaParams: Map[String, Object] = Map[String, Object](
"bootstrap.servers" -> "hadoop102:9092,hadoop103:9092,hadoop104:9092", //zookeeper的host,port
"group.id" -> "g3", //消费者组
"enable.auto.commit" -> "true", //是否自动提交
"auto.commit.interval.ms" -> "500", //500ms自动提交offset
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"auto.offset.reset" -> "earliest" //第一次运行,从最初始偏移量开始消费数据
)
//消费kafka的mytest主题生成DStream
val ds: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
//订阅主题
ConsumerStrategies.Subscribe[String, String](List("mytest"),
kafkaParams))
/**
* 将输入流InputDStream[ConsumerRecord[String, String]]=>stream[对象]
* @param ds
* @return
*/
def getAllBeans(ds: InputDStream[ConsumerRecord[String, String]]): DStream[AdsInfo] = {
val result: DStream[AdsInfo] = ds.map(
record => {
val arr: Array[String] = record.value().split(",")
AdsInfo(arr(0).toLong, arr(1), arr(2), arr(3), arr(4))
}
)
result
}
/**
* 处理逻辑
* @param opt
*/
def runApp(opt: => Unit): Unit = {
try {
//处理逻辑
opt
//执行程序
ssc.start()
ssc.awaitTermination()
} catch {
case e: Exception => e.getMessage
}
}
}
需求一:动态添加黑名单
实现实时的动态黑名单机制:将每天对某个广告点击超过 100 次的用户拉黑。
注:黑名单保存到MySQL中。
思路分析
1)读取Kafka数据之后,并对MySQL中存储的黑名单数据做校验;
2)校验通过则对给用户点击广告次数累加一并存入MySQL;
3)在存入MySQL之后对数据做校验,如果单日超过100次则将该用户加入黑名单。
准备工作
1)存放黑名单用户的表
CREATE TABLE black_list (userid CHAR(2) PRIMARY KEY);
2)存放单日各用户点击每个广告的次数
CREATE TABLE user_ad_count (
dt date,
userid CHAR (2),
adid CHAR (2),
count BIGINT,
PRIMARY KEY (dt, userid, adid)
);
/**
* @description: 需求一:动态添加黑名单
* 说明:实现实时的动态黑名单机制:将每天对某个广告点击超过 100 次的用户拉黑
* (用户,广告id,时间,次数)
* 注:黑名单保存到MySQL中
* @author: HaoWu
* @create: 2020年08月12日
*/
object ProjectDemo_1 extends BaseApp {
def main(args: Array[String]): Unit = {
runApp {
val asdInfo: DStream[AdsInfo] = getAllBeans(ds)
/**
* 校验数据是否在黑名单中
*/
def isBlackList(userid: String, connection: Connection): Boolean = {
var flag: Boolean = true
val sql =
"""
|select * from black_list where userid = ?
|""".stripMargin
val ps: PreparedStatement = connection.prepareStatement(sql)
ps.setString(1, userid)
val result: ResultSet = ps.executeQuery()
if (result != null) {
flag = false
}
flag
}
//1.聚合当前批次数据((timestamp,userid,adsid),count)
val countDS: DStream[((String, String, String), Long)] = asdInfo.map {
//((2020-08-11,102,1),1)
case adsInfo: AdsInfo => ((adsInfo.dayString, adsInfo.userId, adsInfo.adsId), 1L)
}.reduceByKey(_ + _)
countDS.foreachRDD(
rdd => rdd.foreachPartition {
iter => {
//2.向mysql插入数据,准备插入sql和连接
val connection: Connection = JDBCUtil.getConnection()
val sql =
"""
|insert into user_ad_count values(?,?,?,?)
|ON DUPLICATE KEY UPDATE COUNT= count + ?
|""".stripMargin
val ps: PreparedStatement = connection.prepareStatement(sql)
//2.过滤出在名单中的数据
iter.filter {
case ((_, userid, _), _) => val falg = isBlackList(userid, connection); falg
}
//往mysql重插入更新数据
.foreach {
case ((date, userid, adsid), count) => {
ps.setString(1, date)
ps.setString(2, userid)
ps.setString(3, adsid)
ps.setLong(4, count)
ps.setLong(5, count)
ps.executeUpdate()
}
}
//关闭
ps.close()
//3.插入成功之后,查询对应得userid点击广告此时是否 > 100?
val sql2 =
"""
|select userid from user_ad_count where count > 20
|""".stripMargin
val ps2: PreparedStatement = connection.prepareStatement(sql2)
val resultSet: ResultSet = ps2.executeQuery()
//封装查询出的黑名单列表
val block_list = new mutable.HashSet[String]()
while (resultSet.next()) {
val userid: String = resultSet.getString("userid")
block_list + userid
}
//关闭resulteSet,PreparedStatement
resultSet.close()
ps2.close()
//4.将block_list数据依次插入黑名单表,没有就插入,有就更新
val sql3: String =
"""
|INSERT INTO black_list VALUES (?)
|ON DUPLICATE KEY UPDATE userid=?
|""".stripMargin
val ps3: PreparedStatement = connection.prepareStatement(sql3)
for (userid <- block_list) {
ps3.setString(1, userid)
ps3.setString(2, userid)
ps3.executeUpdate()
}
ps3.close()
connection.close()
}
}
)
}
}
}
需求二:广告点击量实时统计
描述:实时统计每天各地区各城市各广告的点击总流量,并将其存入MySQL
步骤:①updateStateByKey有状态累加计算 ②向mysql执行插入更新操作
Mysql表
CREATE TABLE area_city_ad_count (
dt date,
area CHAR(4),
city CHAR(4),
adid CHAR(2),
count BIGINT,
PRIMARY KEY (dt,area,city,adid) --联合主键
);
代码实现
import java.sql.{Connection, PreparedStatement}
import com.spark.streaming_need.bean.AdsInfo
import com.spark.streaming_need.utils.JDBCUtil
import org.apache.spark.streaming.dstream.DStream
/**
* @description: 需求二:广告点击量实时统计
* 描述:实时统计每天各地区各城市各广告的点击总流量,并将其存入MySQL
* @author: HaoWu
* @create: 2020年08月11日
*/
object ProjectDemo_2 extends BaseApp {
def main(args: Array[String]): Unit = {
runApp {
//updateStateByKey算子有状态,需要checkpoint
ssc.checkpoint("function2")
//1.单个批次内对数据进行按照天维度的聚合统计
//数据格式:1597148289569,华北,北京,102,4
val DsAds: DStream[AdsInfo] = getAllBeans(ds)
val kvDS: DStream[((String, String, String, String), Int)] = DsAds.map {
case (adsInfo) => {
((adsInfo.dayString, adsInfo.area, adsInfo.city, adsInfo.adsId), 1)
}
}
//2.结合MySQL数据跟当前批次数据更新原有的数据
//计算当前批次和之前的数据累加结果
val result: DStream[((String, String, String, String), Int)] = kvDS.updateStateByKey {
case (seq, opt) => {
var sum: Int = seq.sum
val value = opt.getOrElse(0)
sum += value
Some(sum)
}
}
//3.将结果写入Mysql
result.foreachRDD(
rdd => {
rdd.foreachPartition {
iter => {
//每个分区创建一个Connection连接
val connection: Connection = JDBCUtil.getConnection()
//准备sql,实现mysql的upsert操作
val sql =
"""
|insert into area_city_ad_count values (?,?,?,?,?)
|on duplicate key update count=?
|""".stripMargin
//PreparedStatement
val ps: PreparedStatement = connection.prepareStatement(sql)
//RDD分区中的每个数据都执行写出
iter.foreach {
case ((dayString, area, city, adsId), count) => {
//填充占位符
ps.setString(1, dayString)
ps.setString(2, area)
ps.setString(3, city)
ps.setString(4, adsId)
ps.setInt(5, count)
ps.setInt(6, count)
//执行写入
ps.executeUpdate()
}
}
//关闭资源
ps.close()
connection.close()
}
}
}
)
}
}
}
需求三:最近一小时广告点击量
需求说明
求最近1h的广告点击量,要求按照以下结果显示
结果展示:
1:List [15:50->10,15:51->25,15:52->30]
2:List [15:50->10,15:51->25,15:52->30]
3:List [15:50->10,15:51->25,15:52->30]
思路分析
1)开窗确定时间范围;
2)在窗口内将数据转换数据结构为((adid,hm),count);
3)按照广告id进行分组处理,组内按照时分排序。
代码实现
import org.apache.spark.streaming.{Minutes, Seconds}
import org.apache.spark.streaming.dstream.DStream
/**
* @description: 需求三:最近一小时广告点击量,3秒更新一次
* @author:
* 结果展示:
* 1:List [15:50->10,15:51->25,15:52->30]
* 2:List [15:50->10,15:51->25,15:52->30]
* 3:List [15:50->10,15:51->25,15:52->30]
* @create: 2020年08月12日
*/
object ProjectDemo_3 extends BaseApp {
def main(args: Array[String]): Unit = {
//运行app
runApp {
val AdsDStream: DStream[((String, String), Int)] = getAllBeans(ds).map {
case adsInfo => ((adsInfo.adsId, adsInfo.hmString), 1)
}
val result: DStream[(String, List[(String, Int)])] = AdsDStream
//窗口内聚合
.reduceByKeyAndWindow((a: Int, b: Int) => {
a + b
}, Minutes(60), Seconds(3))
.map { case ((adsId, ahmString), count) => (adsId, (ahmString, count)) }
//按照广告id分组
.groupByKey()
//组内按时间升序
.mapValues {
case iter => iter.toList.sortBy(_._1)
}
result.print(10)
}
}
}
结果
-------------------------------------------
Time: 1597234032000 ms
-------------------------------------------
(1,List((20:01,12), (20:02,112), (20:03,98), (20:04,95), (20:05,104), (20:06,96), (20:07,13)))
(2,List((20:01,24), (20:02,97), (20:03,99), (20:04,103), (20:05,95), (20:06,105), (20:07,6)))
(3,List((20:01,30), (20:02,87), (20:03,92), (20:04,108), (20:05,117), (20:06,88), (20:07,22)))
(4,List((20:01,15), (20:02,101), (20:03,100), (20:04,99), (20:05,84), (20:06,112), (20:07,22)))
(5,List((20:01,19), (20:02,103), (20:03,111), (20:04,95), (20:05,100), (20:06,99), (20:07,10)))
-------------------------------------------
Time: 1597234035000 ms
-------------------------------------------
(1,List((20:01,12), (20:02,112), (20:03,98), (20:04,95), (20:05,104), (20:06,96), (20:07,20)))
(2,List((20:01,24), (20:02,97), (20:03,99), (20:04,103), (20:05,95), (20:06,105), (20:07,13)))
(3,List((20:01,30), (20:02,87), (20:03,92), (20:04,108), (20:05,117), (20:06,88), (20:07,26)))
(4,List((20:01,15), (20:02,101), (20:03,100), (20:04,99), (20:05,84), (20:06,112), (20:07,26)))
(5,List((20:01,19), (20:02,103), (20:03,111), (20:04,95), (20:05,100), (20:06,99), (20:07,15)))
-------------------------------------------
Time: 1597234038000 ms
-------------------------------------------
(1,List((20:01,12), (20:02,112), (20:03,98), (20:04,95), (20:05,104), (20:06,96), (20:07,23)))
(2,List((20:01,24), (20:02,97), (20:03,99), (20:04,103), (20:05,95), (20:06,105), (20:07,16)))
(3,List((20:01,30), (20:02,87), (20:03,92), (20:04,108), (20:05,117), (20:06,88), (20:07,34)))
(4,List((20:01,15), (20:02,101), (20:03,100), (20:04,99), (20:05,84), (20:06,112), (20:07,30)))
(5,List((20:01,19), (20:02,103), (20:03,111), (20:04,95), (20:05,100), (20:06,99), (20:07,20)))
Spark(十七)【SparkStreaming需求练习】的更多相关文章
- 基于spark和sparkstreaming的word2vec
概述 Word2vec是一款由谷歌发布开源的自然语言处理算法,其目的是把words转换成vectors,从而可以用数学的方法来分析words之间的关系.Spark其该算法进行了封装,并在mllib中实 ...
- spark or sparkstreaming的内存泄露问题?
关于sparkstreaming的无法正常产生数据---->到崩溃---->到数据读写极为缓慢(或块丢失?)问题 前两阶段请看我的博客:https://www.cnblogs.com/wa ...
- 【Spark】SparkStreaming和Kafka的整合
文章目录 Streaming和Kafka整合 概述 使用0.8版本下Receiver DStream接收数据进行消费 步骤 一.启动Kafka集群 二.创建maven工程,导入jar包 三.创建一个k ...
- 【Spark】SparkStreaming与flume进行整合
文章目录 注意事项 SparkStreaming从flume中poll数据 步骤 一.开发flume配置文件 二.启动flume 三.开发sparkStreaming代码 1.创建maven工程,导入 ...
- 【Spark】SparkStreaming从不同基本数据源读取数据
文章目录 基本数据源 文件数据源 注意事项 步骤 一.创建maven工程并导包 二.在HDFS创建目录,并上传要做测试的数据 三.开发SparkStreaming代码 四.运行代码后,往HDFS文件夹 ...
- 【Spark】SparkStreaming的容错机制
文章目录 检查点机制 驱动器程序容错 工作节点容错 接收器容错 处理保证 检查点机制 Metadata checkpointing -- 将定义流计算的信息存入容错的系统如HDFS. Data che ...
- Spark之 Spark Streaming流式处理
SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理.Spark Streaming有高吞吐量和容错能力强等特点.Spark Streamin ...
- Spark2.1.0之初识Spark
随着近十年互联网的迅猛发展,越来越多的人融入了互联网——利用搜索引擎查询词条或问题:社交圈子从现实搬到了Facebook.Twitter.微信等社交平台上:女孩子们现在少了逛街,多了在各大电商平台上的 ...
- Spark基础知识详解
Apache Spark是一种快速通用的集群计算系统. 它提供Java,Scala,Python和R中的高级API,以及支持通用执行图的优化引擎. 它还支持一组丰富的高级工具,包括用于SQL和结构化数 ...
随机推荐
- hdu 5171 GTY's birthday gift(数学,矩阵快速幂)
题意: 开始时集合中有n个数. 现在要进行k次操作. 每次操作:从集合中挑最大的两个数a,b进行相加,得到的数添加进集合中. 以此反复k次. 问最后集合中所有数的和是多少. (2≤n≤100000,1 ...
- hdu 5094 Maze (BFS+状压)
题意: n*m的迷宫.多多要从(1,1)到达(n,m).每移动一步消耗1秒.有P种钥匙. 有K个门或墙.给出K个信息:x1,y1,x2,y2,gi 含义是(x1,y1)与(x2,y2)之间有gi ...
- 集合之Map接口
Map接口概述 Map与Collection并列存在.用于存储具有映射关系的数据 : key-value Map 中的 key 和 value 都可以是任何引用类型的数据 Map 中的 key 用Se ...
- 讲分布式唯一id,这篇文章很实在
分布式唯一ID介绍 分布式系统全局唯一的 id 是所有系统都会遇到的场景,往往会被用在搜索,存储方面,用于作为唯一的标识或者排序,比如全局唯一的订单号,优惠券的券码等,如果出现两个相同的订单号,对于用 ...
- ssh密码登录
https://stackoverflow.com/a/16928662/8025086 https://askubuntu.com/a/634789/861079 #!/usr/bin/expect ...
- css--元素居中常用方法总结
前言 元素居中是日常开发和学习中最常见的问题,同时也是面试中经常考察的知识点,本文来总结一下这方面的知识点. 正文 1.水平居中 (1)子父元素宽度固定,子元素设置 margin:auto,并且子元素 ...
- 7.深入TiDB:range 范围计算优化
本文基于 TiDB release-5.1进行分析,需要用到 Go 1.16以后的版本 我的博客地址:https://www.luozhiyun.com/archives/605 这篇文章首先会回顾一 ...
- Linux基础四:软件包管理
四.软件包管理器: 1.概念 红帽有两款软件包管理器,分别是rpm和yum. 1.rpm软件包管理器 -> 用来安装单个包 -> .rpm文件 红帽的安装包文件,都放在Packag ...
- 【linux系统】命令学习(五)linux三剑客 grep \ awk \ sed
grep----基于正则表达式查找满足条件的行 1.内容检索 获取行 grep pattern file 获取内容 grep -o pattern file 获取上下文grep -A -B -C pa ...
- 常用的Dos(Win+R)命令
打开CMD的方式 开始 + 系统 + 命令提示符 win + R --> 输入CMD 管理员方式运行:开始-->windows系统-->右击命令提示符-->管理员身份运行(最高 ...