The preprocessing pipeline of EEG data from EEG-fMRI paradigm differs from that of regular EEG data, because they are mainly influenced by MRI artefacts. However, after removing the MRI artefacts at the first step, following ones would be the same as the regular pipeline.

Figure above: an example of raw EEG data with MRI artefacts - the very dense part. Only after removing the dominating artefacts could we go on with other preprocessing and analyses.

Environment requirement

  • Matlab (R2015b).
  • EEGLab toolbox (v13.6.5b). Plug-ins needed: BERGEN, FMRIB, AAR.

Testing data

Acquired using an Brain Products system with 64 scalp channels. Standard procedure to setup the EEG system: fs = 5000 Hz, low-pass hard ware filter at 250 Hz. Using SyncBox to sync the EEG and fMRI clocks.

Gathering continuous data for about 10-min.

Pipeline

  1. Removing gradient artefacts: using BERGEN plug-in. Sliding window length for artefact template = 31.
  2. Filtering: first high-pass at 0.5 Hz, then low-pass at 45 Hz - do NOT using band-pass filter, do them separately.
  3. Resample the data to fs = 500 Hz. Resample before QRS detection is beneficial (as far as I can see).
  4. Detect R-peaks, visually check incorrect ones and remove cardiac artefacts: using FMRIB plug-in (optimal basis set: first 3 PCs used). Using Edit -> Event values to delete the incorrect QRS events.
  5. Import channel locations: using '\dipfit2.3\standard_BESA\standard-10-5-cap385.elp'.
  6. Select the data points to be analysed - to save time.
  7. Remove ECG and bad channels (Must done before re-reference).
  8. Re-reference: average reference.
  9. Removing EOG (blinks) and EMG artefacts using AAR plug-in directly.

Note

  • The data is a continuous data. For task data (i.e. you may epoch them first), baseline correction is needed.
  • The AAR plugin is good to detect EOG and EMG artefacts, but sometimes they do not pick up ICs relating to residuals of R-peak artefacts.
  • Considering what mentioned above, an alternative is using 'ICA + ADJUST plug-in' to replace AAR in step 9. This is a better strategy with enough experience on recognising artefact ICs.
  • Removing power interference may be needed sometimes: 'Tools -> Filter the data -> Basic FIR filter -> Lower & Higher: both 50Hz, using Notch filter'.
  • The steps and their order may vary among different groups, while the main parts remain unchanged.
  • Inspired by 52Brain. Thanks a lot to the contributors.

One EEG preprocessing pipeline - EEG-fMRI paradigm的更多相关文章

  1. EEG preprocessing - A Trick Before Doing ICA

    EEGLab maillist My ICs don't have high power in low frequency is b/c I do a small trick here. before ...

  2. EEG preprocess - re-reference EEG预处理 - 重参考

    Source: https://blricrex.hypotheses.org/ressources/eeg/pre-processing-for-erps/re-referencing-eeg-da ...

  3. [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset

    The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...

  4. Specific sleep staging features in EEG

    Source: MedScape Overview NREM and REM occur in alternating cycles, each lasting approximately 90-10 ...

  5. EEG montage

    Source: WikiPedia - Electroencephalography Since an EEG voltage signal represents a difference betwe ...

  6. Advice for applying Machine Learning

    https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post i ...

  7. Recover data from reference electrode via EEGLab 用EEGLab恢复参考电极数据

    The data of scanning reference electrode will not show initially. Here is a summary of recovering it ...

  8. EEGLAB数据分析:预处理与后续处理

    来源:http://blog.sina.com.cn/s/blog_13171a73d0102v4zx.html 数据预处理主要包括数据导入.电极定位.电极返回.滤波.去除伪迹.重建参考.分段.叠加平 ...

  9. 使用Flask部署机器学习模型

    Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb ...

随机推荐

  1. IP地址分类

  2. Gulp如何编译sass

    Gulp 是一个自动化工具,前端开发者可以使用它来处理常见任务: 1.搭建web服务器 2.文件保存时自动重载浏览器 3.使用预处理器如Sass.LESS 4.优化资源,比如压缩CSS.JavaScr ...

  3. JS如何禁止别人查看网站源码

    四种查看路径: 查看效果:猛戳 1.直接按F12 2.Ctrl+Shift+I查看 3.鼠标点击右键查看 4.Ctrl+u=view-source:+url 把以上三种状态都屏蔽掉就可以了,docum ...

  4. npm 入门

    要使用 npm 需要安装 node.js,因为 node.js 中会附带 npm 查看 node 的安装路径 which node 查看 npm 的安装路径 which npm npm 分为两种安装模 ...

  5. 一起来学习android自定义控件3——边缘凹凸的View

    前言 最近做项目的时候遇到一个卡劵的效果,由于自己觉得用图片来做的话可以会出现适配效果不好,再加上自己自定义view方面的知识比较薄弱,所以想试试用自定义View来实现.先看设计图效果 实现分析 上面 ...

  6. Python绘制PDF文件~超简单的小程序

    Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http:// ...

  7. Java:Remote Debug

    Java  Remote Debug -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_socket,server=y,add ...

  8. 15天玩转redis —— 第十一篇 让你彻底了解RDB存储结构

    接着上一篇说,这里我们来继续分析一下RDB文件存储结构,首先大家都知道RDB文件是在redis的“快照”的模式下才会产生,那么如果 我们理解了RDB文件的结构,是不是让我们对“快照”模式能做到一个心中 ...

  9. 从零自学Hadoop(16):Hive数据导入导出,集群数据迁移上

    阅读目录 序 导入文件到Hive 将其他表的查询结果导入表 动态分区插入 将SQL语句的值插入到表中 模拟数据文件下载 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并 ...

  10. x01.Weiqi.12: 定式布局

    定式 下一步当将定式保存到数据库中,如布局中的代码所示,但其初始的代码更有利于理解.以小飞挂为例: // 0 // + 0 0 // + // // + List<Pos> P_LuSta ...