The preprocessing pipeline of EEG data from EEG-fMRI paradigm differs from that of regular EEG data, because they are mainly influenced by MRI artefacts. However, after removing the MRI artefacts at the first step, following ones would be the same as the regular pipeline.

Figure above: an example of raw EEG data with MRI artefacts - the very dense part. Only after removing the dominating artefacts could we go on with other preprocessing and analyses.

Environment requirement

  • Matlab (R2015b).
  • EEGLab toolbox (v13.6.5b). Plug-ins needed: BERGEN, FMRIB, AAR.

Testing data

Acquired using an Brain Products system with 64 scalp channels. Standard procedure to setup the EEG system: fs = 5000 Hz, low-pass hard ware filter at 250 Hz. Using SyncBox to sync the EEG and fMRI clocks.

Gathering continuous data for about 10-min.

Pipeline

  1. Removing gradient artefacts: using BERGEN plug-in. Sliding window length for artefact template = 31.
  2. Filtering: first high-pass at 0.5 Hz, then low-pass at 45 Hz - do NOT using band-pass filter, do them separately.
  3. Resample the data to fs = 500 Hz. Resample before QRS detection is beneficial (as far as I can see).
  4. Detect R-peaks, visually check incorrect ones and remove cardiac artefacts: using FMRIB plug-in (optimal basis set: first 3 PCs used). Using Edit -> Event values to delete the incorrect QRS events.
  5. Import channel locations: using '\dipfit2.3\standard_BESA\standard-10-5-cap385.elp'.
  6. Select the data points to be analysed - to save time.
  7. Remove ECG and bad channels (Must done before re-reference).
  8. Re-reference: average reference.
  9. Removing EOG (blinks) and EMG artefacts using AAR plug-in directly.

Note

  • The data is a continuous data. For task data (i.e. you may epoch them first), baseline correction is needed.
  • The AAR plugin is good to detect EOG and EMG artefacts, but sometimes they do not pick up ICs relating to residuals of R-peak artefacts.
  • Considering what mentioned above, an alternative is using 'ICA + ADJUST plug-in' to replace AAR in step 9. This is a better strategy with enough experience on recognising artefact ICs.
  • Removing power interference may be needed sometimes: 'Tools -> Filter the data -> Basic FIR filter -> Lower & Higher: both 50Hz, using Notch filter'.
  • The steps and their order may vary among different groups, while the main parts remain unchanged.
  • Inspired by 52Brain. Thanks a lot to the contributors.

One EEG preprocessing pipeline - EEG-fMRI paradigm的更多相关文章

  1. EEG preprocessing - A Trick Before Doing ICA

    EEGLab maillist My ICs don't have high power in low frequency is b/c I do a small trick here. before ...

  2. EEG preprocess - re-reference EEG预处理 - 重参考

    Source: https://blricrex.hypotheses.org/ressources/eeg/pre-processing-for-erps/re-referencing-eeg-da ...

  3. [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset

    The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...

  4. Specific sleep staging features in EEG

    Source: MedScape Overview NREM and REM occur in alternating cycles, each lasting approximately 90-10 ...

  5. EEG montage

    Source: WikiPedia - Electroencephalography Since an EEG voltage signal represents a difference betwe ...

  6. Advice for applying Machine Learning

    https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post i ...

  7. Recover data from reference electrode via EEGLab 用EEGLab恢复参考电极数据

    The data of scanning reference electrode will not show initially. Here is a summary of recovering it ...

  8. EEGLAB数据分析:预处理与后续处理

    来源:http://blog.sina.com.cn/s/blog_13171a73d0102v4zx.html 数据预处理主要包括数据导入.电极定位.电极返回.滤波.去除伪迹.重建参考.分段.叠加平 ...

  9. 使用Flask部署机器学习模型

    Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb ...

随机推荐

  1. js promise chain

    新的标准里增加了原生的Promise. 这里只讨论链式使用的情况,思考一下其中的细节部分. 一,关于 then() 和 catch() 的复习 then() 和 catch() 的参数里可以放置 ca ...

  2. 初识Java

    Java是一种简单的.面向对象的.分布式的.解释的.安全的.可移植的.性能优异的多线程语言.它以极强的安全性.平台无关性.硬件结构无关性.语言简洁.面向对象的特点,在网络编程语言中占据了无可比拟的优势 ...

  3. KB,Kb单位换算,网络带宽中的Kbps和KB/s到底是什么意思? (注:B和b的区别)

    B是指字节(Byte)1个字节有8个比特组成    b是指比特(bit)代表一个2进制位(值为0或1) 上过网的朋友应该会听说过网络带宽这个词,可是这个网络带宽的单位到底是什么,为什么有的人说Kbps ...

  4. java web学习总结(二十一) -------------------模拟Servlet3.0使用注解的方式配置Servlet

    一.Servlet的传统配置方式 在JavaWeb开发中, 每次编写一个Servlet都需要在web.xml文件中进行配置,如下所示: 1 <servlet> 2 <servlet- ...

  5. Entity Framework Code First 中使用 Fluent API 笔记。

    在做MVC+EF CodeFirst 的Demo时,碰到的问题, 在组册用户时,要让用户输入确认密码,但是数据库中又不需要保存这个字段,解决方案很多了,这里我列出通过EF Code First的解决方 ...

  6. jQuery初探 jQuery选取和操纵元素的特点

    jQuery初探 jQuery选取和操纵元素的特点 JavaScript选取元素 先来看看不用jQuery的时候我们是怎么处理元素选取的. JavaScript选取元素的时候,可以根据id获取元素,当 ...

  7. GPU大百科全书索引(有助于理解openGL工作流程)

    GPU大百科全书索引 0.GPU大百科全书 前传 看图形与装修的关系 1.GPU大百科全书 第一章:美女 方程与几何 2.GPU大百科全书 第二章 凝固生命的光栅化 3.GPU大百科全书 第三章:像素 ...

  8. IOS开发基础知识--碎片35

    1:iOS视图控制对象生命周期 init-初始化程序 viewDidLoad-加载视图 viewWillAppear-UIViewController对象的视图即将加入窗口时调用: viewDidAp ...

  9. Javascript如何实现AOP

    简介: AOP(面向切面的编程)是为了解决功能的独立性与可维护性而提供的一种编程思想.当多个函数大量重复使用同一个功能时通过分层切分,将功能平衡的划分,从而提高低耦合性. JS中实现: index.h ...

  10. spring mvc生成注册验证码

    通过Spring MVC为系统添加验证码 1:布局登陆页面,用户名,密码,填写验证码的文本框,及验证码的图片及点击换图 <%@ taglib prefix="c" uri=& ...