1. TensorFlow model

import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
import tensorflow as tf
from tensorflow.python.framework import ops
from cnn_utils import * %matplotlib inline
np.random.seed(1)

导入数据

# Loading the data (signs)
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5.

展示数据

# Example of a picture
index = 6
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

y = 2

数据的维度

X_train = X_train_orig/255.
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
conv_layers = {}

number of training examples = 1080

number of test examples = 120

X_train shape: (1080, 64, 64, 3)

Y_train shape: (1080, 6)

X_test shape: (120, 64, 64, 3)

Y_test shape: (120, 6)

1.1 Create placeholders

TensorFlow requires that you create placeholders for the input data that will be fed into the model when running the session.

Exercise: Implement the function below to create placeholders for the input image X and the output Y.

  • You should not define the number of training examples for the moment.

  • To do so, you could use "None" as the batch size, it will give you the flexibility to choose it later.

  • Hence X should be of dimension [None, n_H0, n_W0, n_C0] and Y should be of dimension [None, n_y]. Hint.

# GRADED FUNCTION: create_placeholders

def create_placeholders(n_H0, n_W0, n_C0, n_y):
"""
Creates the placeholders for the tensorflow session. Arguments:
n_H0 -- scalar, height of an input image
n_W0 -- scalar, width of an input image
n_C0 -- scalar, number of channels of the input
n_y -- scalar, number of classes Returns:
X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
""" ### START CODE HERE ### (≈2 lines)
X = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0, n_C0])
Y = tf.placeholder(tf.float32, shape=[None, n_y])
### END CODE HERE ### return X, Y

测试:

X, Y = create_placeholders(64, 64, 3, 6)
print ("X = " + str(X))
print ("Y = " + str(Y))

输出:

X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32)

Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32)

1.2 Initialize parameters

  • You will initialize weights/filters \(W1\) and \(W2\) using tf.contrib.layers.xavier_initializer(seed = 0).

  • You don't need to worry about bias variables as you will soon see that TensorFlow functions take care of the bias.

  • Note also that you will only initialize the weights/filters for the conv2d functions. TensorFlow initializes the layers for the fully connected part automatically. We will talk more about that later in this assignment.

Exercise: Implement initialize_parameters(). The dimensions for each group of filters are provided below. Reminder - to initialize a parameter \(W\) of shape [1,2,3,4] in Tensorflow, use:

W = tf.get_variable("W", [1,2,3,4], initializer = ...)

More Info.

# GRADED FUNCTION: initialize_parameters

def initialize_parameters():
"""
Initializes weight parameters to build a neural network with tensorflow. The shapes are:
W1 : [4, 4, 3, 8]
W2 : [2, 2, 8, 16]
Returns:
parameters -- a dictionary of tensors containing W1, W2
""" tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 2 lines of code)
# (f, f, n_C_prev, n_C)
W1 = tf.get_variable('W1',[4, 4, 3, 8], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
W2 = tf.get_variable('W2',[2, 2, 8, 16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) ### END CODE HERE ### parameters = {"W1": W1,
"W2": W2} return parameters

测试

tf.reset_default_graph()
with tf.Session() as sess_test:
parameters = initialize_parameters()
init = tf.global_variables_initializer()
sess_test.run(init)
print("W1 = " + str(parameters["W1"].eval()[1,1,1]))
print("W2 = " + str(parameters["W2"].eval()[1,1,1]))

1.2 Forward propagation

In TensorFlow, there are built-in functions that carry out the convolution steps for you.

  • tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = 'SAME'): given an input \(X\) and a group of filters \(W1\), this function convolves \(W1\)'s filters on X. The third input ([1,f,f,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev). You can read the full documentation here

  • tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'): given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window. You can read the full documentation here

  • tf.nn.relu(Z1): computes the elementwise ReLU of Z1 (which can be any shape). You can read the full documentation here.

  • tf.contrib.layers.flatten(P): given an input P, this function flattens each example into a 1D vector it while maintaining the batch-size. It returns a flattened tensor with shape [batch_size, k]. You can read the full documentation here.

  • tf.contrib.layers.fully_connected(F, num_outputs): given a the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation here.

In the last function above (tf.contrib.layers.fully_connected), the fully connected layer automatically initializes weights in the graph and keeps on training them as you train the model. Hence, you did not need to initialize those weights when initializing the parameters.

Exercise:

Implement the forward_propagation function below to build the following model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED. You should use the functions above.

In detail, we will use the following parameters for all the steps:

  • Conv2D: stride 1, padding is "SAME"

  • ReLU

  • Max pool: Use an 8 by 8 filter size and an 8 by 8 stride, padding is "SAME"

  • Conv2D: stride 1, padding is "SAME"

  • ReLU

  • Max pool: Use a 4 by 4 filter size and a 4 by 4 stride, padding is "SAME"

  • Flatten the previous output.

  • FULLYCONNECTED (FC) layer: Apply a fully connected layer without an non-linear activation function. Do not call the softmax here. This will result in 6 neurons in the output layer, which then get passed later to a softmax. In TensorFlow, the softmax and cost function are lumped together into a single function, which you'll call in a different function when computing the cost.

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
"""
Implements the forward propagation for the model:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "W2"
the shapes are given in initialize_parameters Returns:
Z3 -- the output of the last LINEAR unit
""" # Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
W2 = parameters['W2'] ### START CODE HERE ###
# CONV2D: stride of 1, padding 'SAME'
Z1 = tf.nn.conv2d(X, W1, strides = [1, 1, 1, 1], padding = 'SAME')
# RELU
A1 = tf.nn.relu(Z1)
# MAXPOOL: window 8x8, sride 8, padding 'SAME'
P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
# CONV2D: filters W2, stride 1, padding 'SAME'
Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')
# RELU
A2 = tf.nn.relu(Z2)
# MAXPOOL: window 4x4, stride 4, padding 'SAME'
P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
# FLATTEN
P2 = tf.contrib.layers.flatten(P2)
# FULLY-CONNECTED without non-linear activation function (not not call softmax).
# 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None"
Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)
### END CODE HERE ### return Z3

测试:

tf.reset_default_graph()

with tf.Session() as sess:
np.random.seed(1)
X, Y = create_placeholders(64, 64, 3, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
init = tf.global_variables_initializer()
sess.run(init)
a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})
print("Z3 = " + str(a))

1.3 Compute cost

Implement the compute cost function below. You might find these two functions helpful:

  • tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y):

    • computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss.

    • You can check the full documentation here.

  • tf.reduce_mean: computes the mean of elements across dimensions of a tensor.

    • Use this to sum the losses over all the examples to get the overall cost. You can check the full documentation here.

** Exercise**: Compute the cost below using the function above.

# GRADED FUNCTION: compute_cost 

def compute_cost(Z3, Y):
"""
Computes the cost Arguments:
Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
Y -- "true" labels vector placeholder, same shape as Z3 Returns:
cost - Tensor of the cost function
""" ### START CODE HERE ### (1 line of code)
cost = tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y)
cost = tf.reduce_mean(cost)
### END CODE HERE ### return cost

测试:

tf.reset_default_graph()

with tf.Session() as sess:
np.random.seed(1)
X, Y = create_placeholders(64, 64, 3, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
cost = compute_cost(Z3, Y)
init = tf.global_variables_initializer()
sess.run(init)
a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})
print("cost = " + str(a))

cost = 2.91034

1.4 Model

Finally you will merge the helper functions you implemented above to build a model. You will train it on the SIGNS dataset.

You have implemented random_mini_batches() in the Optimization programming assignment of course 2. Remember that this function returns a list of mini-batches.

Exercise: Complete the function below.

The model below should:

  • create placeholders
  • initialize parameters
  • forward propagate
  • compute the cost
  • create an optimizer

Finally you will create a session and run a for loop for num_epochs, get the mini-batches, and then for each mini-batch you will optimize the function. Hint for initializing the variables

# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
num_epochs = 100, minibatch_size = 64, print_cost = True):
"""
Implements a three-layer ConvNet in Tensorflow:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments:
X_train -- training set, of shape (None, 64, 64, 3)
Y_train -- test set, of shape (None, n_y = 6)
X_test -- training set, of shape (None, 64, 64, 3)
Y_test -- test set, of shape (None, n_y = 6)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 100 epochs Returns:
train_accuracy -- real number, accuracy on the train set (X_train)
test_accuracy -- real number, testing accuracy on the test set (X_test)
parameters -- parameters learnt by the model. They can then be used to predict.
""" ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep results consistent (tensorflow seed)
seed = 3 # to keep results consistent (numpy seed)
(m, n_H0, n_W0, n_C0) = X_train.shape
n_y = Y_train.shape[1]
costs = [] # To keep track of the cost # Create Placeholders of the correct shape
### START CODE HERE ### (1 line)
X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
### END CODE HERE ### # Initialize parameters
### START CODE HERE ### (1 line)
parameters = initialize_parameters()
### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph
### START CODE HERE ### (1 line)
Z3 = forward_propagation(X, parameters)
### END CODE HERE ### # Cost function: Add cost function to tensorflow graph
### START CODE HERE ### (1 line)
cost = compute_cost(Z3, Y)
### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
### START CODE HERE ### (1 line)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
### END CODE HERE ### # Initialize all the variables globally
init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph
with tf.Session() as sess: # Run the initialization
sess.run(init) # Do the training loop
for epoch in range(num_epochs): minibatch_cost = 0.
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
### START CODE HERE ### (1 line)
_ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
### END CODE HERE ### minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch
if print_cost == True and epoch % 5 == 0:
print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
if print_cost == True and epoch % 1 == 0:
costs.append(minibatch_cost) # plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show() # Calculate the correct predictions
predict_op = tf.argmax(Z3, 1)
correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy)
train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
print("Train Accuracy:", train_accuracy)
print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

测试:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

Cost after epoch 0: 1.917920

Cost after epoch 5: 1.532475

Cost after epoch 10: 1.014804

Cost after epoch 15: 0.885137

Cost after epoch 20: 0.766963

Cost after epoch 25: 0.651208

Cost after epoch 30: 0.613356

Cost after epoch 35: 0.605931

Cost after epoch 40: 0.534713

Cost after epoch 45: 0.551402

Cost after epoch 50: 0.496976

Cost after epoch 55: 0.454438

Cost after epoch 60: 0.455496

Cost after epoch 65: 0.458359

Cost after epoch 70: 0.450040

Cost after epoch 75: 0.410687

Cost after epoch 80: 0.469005

Cost after epoch 85: 0.389253

Cost after epoch 90: 0.363808

Cost after epoch 95: 0.376132

Tensor("Mean_1:0", shape=(), dtype=float32)

Train Accuracy: 0.86851853

Test Accuracy: 0.73333335

Convolutional Neural Network-week1编程题(TensorFlow实现手势数字识别)的更多相关文章

  1. Convolutional Neural Network in TensorFlow

    翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...

  2. Tensorflow - Implement for a Convolutional Neural Network on MNIST.

    Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.con ...

  3. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  4. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  5. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  6. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  7. 【转载】 卷积神经网络(Convolutional Neural Network,CNN)

    作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...

  8. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  9. 卷积神经网络(Convolutional Neural Network, CNN)简析

    目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...

随机推荐

  1. Redis的持久化机制与内存管理机制

    1.概述 Redis的持久化机制有两种:RDB 和 AOF ,这两种机制有什么区别?正式环境应该采用哪种机制? 我们的服务器内存资源是有限的,如果内存被Redis的缓存占满了怎么办?这就要看Redis ...

  2. openswan框架和编译时说明

    刚开始学习openswan项目代码时,自己尝试了在虚拟机上编译.安装.运行openswan代码,由于当时刚开始学习openswan代码,因此对于其构成并不清楚,在编译.运行过程中有了问题,基本是通过百 ...

  3. freeswitch的网关配置

    vim  /usr/local/freeswitch/conf/sip_profiles/external/weihu1.xml 1 <!-- 点对点式 --> 2 <!-- 3 & ...

  4. Django学习day11随堂笔记

    今日考题 """ 今日考题 1.简述自定义分页器的使用 2.forms组件是干什么用的,它的主要功能有哪些功能,你能否具体说说每个功能下都有哪些经常用到的方法及注意事项( ...

  5. 在PHP中灵活使用foreach+list处理多维数组

    先抛出问题,有时候我们接收到的参数是多维数组,我们需要将他们转成普通的数组,比如: $arr = [ [1, 2, [3, 4]], [5, 6, [7, 8]], ]; 我们需要的结果是元素1变成1 ...

  6. 【PHP】随机生成名字

    public function test(){ $a = "赵 钱 孙 李 周 吴 郑 王 冯 陈 楮 卫 蒋 沈 韩 杨 朱 秦 尤 许 何 吕 施 张 孔 曹 严 华 金 魏 陶 姜 戚 ...

  7. rationrose安装步骤

    Rational Rose是Rational公司出品的一种面向对象的统一建模语言的可视化建模工具.用于可视化建模和公司级水平软件应用的组件构造. 就像一个戏剧导演设计一个剧本一样,一个软件设计师使用R ...

  8. iPhone发布内测程序的方法

    iPhone是封闭系统,不像android手机可以自行安装apk,所以iPhone手机发布内测程序相对来说复杂一些. 越狱安装 如果测试用户的机器已经越狱,那就简单了,直接打包成ipa,用户直接通过9 ...

  9. 接口管理工具swagger

    swagger,一款致力于解决接口规范化.标准化.文档化的开源库,一款真正的开发神器. swagger三大部分 Editor https://swagger.io/tools/swagger-edit ...

  10. self this

    面向对象编程(OOP,Object OrientedProgramming)现已经成为编程人员的一项基本技能.利用OOP的思想进行PHP的高级编程,对于提高PHP编程能力和规划web开发构架都是很有意 ...