题目

约数和

题解

此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值。

很显然,用暴力枚举肯定会超时。所以我们可以反过来思考,采用枚举约数的方法,对于每个数 \(d\) , \(1\) 到 \(n\) 间满足是\(d\)的倍数的共有\(\lfloor \frac{n}{d} \rfloor\)个数。我们可以构造一个函数

\[f(n)=\sum\limits_{i=1}^{n}{\sum\limits_{d|i}}d
\]

转换后所求的值为 \(f(y)-f(x-1)\) 。

接下来我们只需专注于求 \(f(n)\) 即可。如加粗部分所说,不难得出 \(f(n)\) 可以转换为

\[f(n)=\sum\limits_{d=1}^{n}{d \cdot \lfloor\frac{n}{d}\rfloor}
\]

似乎到这里直接计算已经很不错了,复杂度只有 \(O(x+y)\) ,然而依然会TLE。

所以我们还要想办法优化,注意到一点,对于每一个 \(n\) ,都有若干的 \(d\) 满足 \(\lfloor\frac{n}{d}\rfloor\) 都相等。举个栗子,比如 \(8\) ,当 \(d\) 从 \(1\) 到 \(8\) 分别取值时, \(\lfloor\frac{n}{d}\rfloor\) 的值分别为

\[8,4,2,2,1,1,1,1
\]

我们发现这里面有不少重复的数,我们则需要把这里面每个重复的数的个数算出来。

我们将 \(d\) 从 \(1\) 开始枚举,也就是 \(1\) 作为左界 \(l\) ,那么请问右界 \(r\) 是什么呢?(即 \(\lfloor\frac{n}{r}\rfloor=\lfloor\frac{n}{l}\rfloor\) 且 \(\lfloor\frac{n}{r+1}\rfloor<\lfloor\frac{n}{l}\rfloor\) )

其实很简单, \(r=\lfloor\frac{n}{\lfloor n/l \rfloor}\rfloor\) ,大家可以想一下是不是。然后运用等差数列求和的方式,对于每一个 \(\lfloor\frac{n}{l}\rfloor\) 结果 \(res\) 都要加上

\[\lfloor\frac{n}{l}\rfloor*\sum\limits_{i=l}^{r}{i} =(n/l)*(r-l+1)*(l+r)/2
\]

下一步再将 \(l\) 置为 \(r+1\) ,如此循环,直到 \(l>n\) 为止。

由此,这道题就愉快地解决了。

贴一下代码

代码极短,但浓缩了数学的精华。

#include<iostream>
using namespace std;
long long s(int n)
{
if (n == 0)
return 0;
long long l, r;
long long res = 0;
for (l = 1; l <= n;l = r+1)
{
r = n / (n / l);
res += (n / l) * (r - l + 1) * (l + r)/2;
}
return res;
} int main()
{
int x, y;
cin >> x >> y;
cout << s(y) - s(x - 1);
return 0;
}

洛谷P2424 约数和 题解的更多相关文章

  1. 洛谷 - P2424 - 约数和 - 整除分块

    https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . ...

  2. 洛谷 P2424 约数和

    题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...

  3. 洛谷—— P2424 约数和

    https://www.luogu.org/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f ...

  4. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  5. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  6. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  7. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  8. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  9. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

随机推荐

  1. SaltStack 命令注入漏洞(CVE-2020-16846)

    SaltStack 是基于 Python 开发的一套C/S架构配置管理工具.2020年11月SaltStack官方披露了CVE-2020-16846和CVE-2020-25592两个漏洞,其中CVE- ...

  2. cmd MySQL登录

    mysql -uroot -p >Mysql -P 3306 -h 0.0.0.0 -u root -p 可远程访问

  3. 八数码难题之 A* 算法

    人生第一个A*算法-好激动-- 八数码难题--又称八数码水题,首先要理解一些东西: 1.状态可以转化成整数,比如状态: 1 2 3 4 5 6 7 8 0 可以转化成:123456780这个整数 2. ...

  4. appium的安装和环境配置教程

    模拟器安装 夜神模拟器下载地址:https://www.yeshen.com/ 无脑安装 jdk环境 安装jdk 安装教程:https://www.cnblogs.com/yhoil/p/148086 ...

  5. Kong网关安装之Docker版(2)

    1.安装kong管理工具:konga或者kong-dashboard,这里选择konga 拉取konga镜像: sudo docker pull pantsel/konga:0.14.4 初始化kon ...

  6. Spring学习03(Bean的自动装配)

    6.Bean的自动装配 6.1 自动装配说明 自动装配是使用spring满足bean依赖的一种方法 spring会在应用上下文中为某个bean寻找其依赖的bean. Spring中bean的三种装配机 ...

  7. jeesite中重启项目时用户头像丢失的疑惑

    jeesite中重启项目时用户头像丢失 使用的时候发现,在更换完头像以后,进行页面的刷新会将头像同步给各个位置,但是在系统重新载入的时候,会出现用户的头像加载不出来的情况,还是以demo为例 可以看到 ...

  8. SQL 练习40

    按照出生日期来计算学生的年龄信息 IF OBJECT_ID('GetStudentAge','FN') IS NOT NULL DROP FUNCTION GetStudentAge GO CREAT ...

  9. mybaits进阶01

    在以上mybait入门的改进(增加了接口让增删改查 后期跟容易) 注意:主配置文件和映射配置文件内容不变,但是映射文件要和对应接口放于同目录下并且名称必须相同 一.接口创建 public interf ...

  10. noip11

    T1 考试的时候打的暴力,快结束的时候,脑抽加了个 long long,然后就... 痛失70pts QAQ. Your source code compiled to 8015900 bytes w ...