题意:

给出一棵树,要求去掉k个点,使得剩下的还是一棵树,并且要求Σ(2^i)最大,i是剩下的节点的编号。

思路:

要使得剩下的点的2的幂的和最大,那么肯定要保住大的点,这是贪心。

考虑去掉哪些点的话,那么去掉一个点,它相连的子树的点肯定都得去掉,很麻烦。

所以放过来考虑保留哪些点,那么就从大到小考虑是否保留当前的点。并且把保留的点做标记。

首先n这个点是肯定可以保留的,标记,然后依次考虑n-1,n-2。。。1。

对于当前的点,判断是否已经被标记,如果没有被标记,那么就找到离当前点最远的没有被标记的祖先,如果要标记这个点,那么总共增加的点就是从当前点到离当前点最远的没有被标记的祖先的路径上的所有点的数量,也可以解释为当前点到已经保留的点所构成的树的路径上的点。

找这个路径的时候,暴力的话,n^2,肯定会T,所以可以首先用倍增预处理,再来找祖先,复杂度就可以下降为O(nlogn)。

如果这个数量没有超过要求,那么就把路径上的点全部标记。

最后没有标记的点就是要抛弃的点。

代码:

 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 1e6 + ;
int n,k;
vector<int> g[N];
int fa[N];
int dep[N];
bool vis[N];
int anc[N][];
void dfs(int u,int f)
{
fa[u] = f;
for (int v : g[u])
{
if (v != f)
{
dep[v] = dep[u] + ;
dfs(v,u);
}
}
}
void rdfs(int u,int f)
{
vis[u] = ;
if (u == f) return;
rdfs(fa[u],f);
}
void preprocess()
{
for (int i = ;i < n;i++)
{
anc[i][] = fa[i];
for (int j = ;(<<j) < n;j++) anc[i][j] = -;
}
for (int j = ;(<<j) < n;j++)
{
for (int i = ;i < n;i++)
{
if (anc[i][j-] != -)
{
int a = anc[i][j-];
anc[i][j] = anc[a][j-];
}
}
}
}
int main()
{
memset(anc,-,sizeof(anc));
scanf("%d%d",&n,&k);
k = n - k;
for (int i = ;i < n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
x--,y--;
g[x].push_back(y);
g[y].push_back(x);
}
dfs(n-,-);
preprocess();
int num = ;
vis[n-] = ;
for (int i = n - ;i >= ;i--)
{
if (vis[i]) continue;
int t = i;
for (int j = ;j >= ;j--)//j是从大到小枚举
{
if (anc[t][j] == -) continue;
else
{
if (!vis[anc[t][j]])
{
t = anc[t][j];
}
}
}
if (dep[i] - dep[t] + + num <= k)
{
num += dep[i] - dep[t] + ;
rdfs(i,t);
}
}
for (int i = ;i < n;i++)
{
if (!vis[i]) printf("%d ",i+);
}
return ;
}

codeforces 980E The Number Games的更多相关文章

  1. Codeforces 980E The Number Games 贪心 倍增表

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074226.html 题目传送门 - Codeforces 980E 题意 $\rm Codeforces$ ...

  2. Codeforces 980E The Number Games - 贪心 - 树状数组

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...

  3. Codeforces 980 E. The Number Games

    \(>Codeforces \space 980 E. The Number Games<\) 题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) ...

  4. Codeforces 55D Beautiful Number

    Codeforces 55D Beautiful Number a positive integer number is beautiful if and only if it is divisibl ...

  5. CF980E The Number Games

    CF980E The Number Games 给定一棵大小为 \(n\) 的树,第 \(i\) 个点的点权为 \(2^i\) ,删掉 \(k\) 个点及其连边,使得剩下的点组成一个连通块,且权值和最 ...

  6. CF980E The Number Games【树链剖分/线段树】

    CF980E The Number Games 题意翻译 Panel 国将举办名为数字游戏的年度表演.每个省派出一名选手. 国家有 n 个编号从 1 到 n 的省,每个省刚好有一条路径将其与其他省相连 ...

  7. The Number Games CodeForces - 980E (树, 贪心)

    链接 大意: 给定$n$节点树, 求删除$k$个节点, 使得删除后还为树, 且剩余点$\sum{2^i}$尽量大 维护一个集合$S$, 每次尽量添加最大的点即可 这样的话需要支持求点到集合的最短距离, ...

  8. Codeforces Round #480 (Div. 2) E - The Number Games

    题目大意:给你n个点的一棵树, 每个点的权值为2^i ,让你删掉k个点使得剩下的权值和最大. 思路:这题还是比较好想的, 我们反过来考虑, 剩下一个的情况肯定是选第n个点,剩下两个 我们肯定优先考虑第 ...

  9. codeforces Soldier and Number Game(dp+素数筛选)

    D. Soldier and Number Game time limit per test3 seconds memory limit per test256 megabytes inputstan ...

随机推荐

  1. objenesis

    1.objenesis About Objenesis is a small Java library that serves one purpose: To instantiate a new ob ...

  2. 008-ThreadLocal原理分析

    一.简介 早在JDK 1.2的版本中就提供java.lang.ThreadLocal,ThreadLocal为解决多线程程序的并发问题提供了一种新的思路.使用这个工具类可以很简洁地编写出优美的多线程程 ...

  3. 009-Iterator 和 for...of 循环

    一.概述 原文地址:http://es6.ruanyifeng.com/#docs/iterator 二.详细 2.1.概念 遍历器(Iterator)是一种机制.它是一种接口,为各种不同的数据结构提 ...

  4. C#编程基础

    1..NET与C# A..NET 是 Microsoft XML Web services 平台.XML Web services 允许应用程序通过 Internet 进行通讯和共享数据,而不管所采用 ...

  5. 常见的local variable 'x' referenced before assignment问题

    def fun1(): x = 5 def fun2(): x *= 2 return x return fun2() 如上代码,调用fun1() 运行会出错:UnboundLocalError: l ...

  6. Java元注解—— @Retention @Target @Document @Inherited

    java中元注解有四个: @Retention @Target @Document @Inherited: @Retention:注解的保留位置 @Retention(RetentionPolicy. ...

  7. Case when then esle end

    Case具有两种格式.简单Case函数和Case搜索函数. --简单Case函数 CASE sex ' THEN '男' ' THEN '女' ELSE '其他' END --Case搜索函数 ' T ...

  8. 笔记本(ThinkPad)怎样关闭触摸板

    随着笔记本电脑的普及,人们越来越习惯于出门使用笔记本,笔记本的便捷高效也大幅度地提升了人们的工作效率.但是如果居家使用笔记本电脑,也有其不便之处.比如在键盘上打字,很容易就会喷到触摸板,以至于光标一下 ...

  9. css页面布局--三栏(两边固定中间自适应&两边自适应中间固定)

    http://www.cnblogs.com/zhanyishu/p/5656875.html

  10. WebAssembly 浏览器中运行c/c++模块

    今天,要给前端造点儿福利 浏览器中能调用javascript,曾经我们以为够用了,够强大了,但是事实上是完全不够 还好,mozilla的工程师提出了webassembly,目前是利用emsctript ...