CF643E. Bear and Destroying Subtrees 期望dp
题目链接
CF643E. Bear and Destroying Subtrees
题解
dp[i][j]表示以i为根的子树中,树高小于等于j的概率
转移就是dp[i][j] = 0.5 + 0.5 (dp[i][j-1]) 首先是边不连的概率,其次是<=dp[son][j -1]的
然后我zz了
对于新增一个点,对于父亲的深度影响只有该节点的深度+1,除掉旧的乘上新的就OK,我全更新了一遍...,写出了奇怪的bug...
对于新点,只需要向上更新60次就好了,因为\(\frac{1}{2^60}\)已经足够小了
代码
#include<cstdio>
#include<algorithm>
#include<vector>
//#define int long long
using namespace std;
const int maxn = 5 * 1e5 + 10, h = 60;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, Q, fa[maxn], node;
double f[maxn][61];
main() {
Q = read(); node = 1;
for(int i = 0;i < h;++ i) f[node][i] = 1.0;
while(Q--) {
int opt = read(), x = read();
if(opt == 1) {
fa[++ node] = x;
for(int i = 0; i < h; i++) f[node][i] = 1;
double pre = f[x][0], now;
f[x][0] *= 0.5;
for(int i = 1; i < h && x; i++, x = fa[x]) {
now = f[fa[x]][i];
f[fa[x]][i] /= 0.5 + 0.5 * pre;
f[fa[x]][i] *= 0.5 + 0.5 * f[x][i - 1];
pre = now;
}
} else if(opt == 2) {
double ans = 0;
for(int i = 0; i < h; i++) ans += i * (f[x][i] - f[x][i - 1]);
printf("%.10lf\n", ans);
}
}
return 0;
}
CF643E. Bear and Destroying Subtrees 期望dp的更多相关文章
- [CF643E]Bear and Destroying Subtrees(期望,忽略误差)
Description: 给你一棵初始只有根为1的树 两种操作 1 x 表示加入一个新点以 x为父亲 2 x 表示以 x 为根的子树期望最深深度 每条边都有 \(\frac{1}{ ...
- 笔记-CF643E Bear and Destroying Subtrees
CF643E Bear and Destroying Subtrees 设 \(f_{i,j}\) 表示节点 \(i\) 的子树深度为 \(\le j\) 的概率,\(ch_i\) 表示 \(i\) ...
- CF643E Bear and Destroying Subtrees
题解 我们可以先写出\(dp\)式来. 设\(dp[u][i]\)表示以\(u\)为根的子树深度不超过\(i-1\)的概率 \(dp[u][i]=\prod (dp[v][i-1]+1)*\frac{ ...
- CF 643 E. Bear and Destroying Subtrees
E. Bear and Destroying Subtrees http://codeforces.com/problemset/problem/643/E 题意: Q个操作. 加点,在原来的树上加一 ...
- Codeforces.643E.Bear and Destroying Subtrees(DP 期望)
题目链接 \(Description\) 有一棵树.Limak可以攻击树上的某棵子树,然后这棵子树上的每条边有\(\frac{1}{2}\)的概率消失.定义 若攻击以\(x\)为根的子树,高度\(ht ...
- [cf674E]Bear and Destroying Subtrees
令$f_{i,j}$表示以$i$为根的子树中,深度小于等于$j$的概率,那么$ans_{i}=\sum_{j=1}^{dep}(f_{i,j}-f_{i,j-1})j$ 大约来估计一下$f_{i,j} ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
随机推荐
- ROS Kinetic Install on Debian 9
Not Succesed! 1. 配置源$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release - ...
- SpringMVC使用Burlap发布远程服务
参考这篇文章https://www.cnblogs.com/fanqisoft/p/10283156.html 将提供者配置类中的 @Bean public HessianServiceExporte ...
- MySQL— 进阶
目录 一.视图 二.触发器 三.函数 四.存储过程 五.事务 一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集 ...
- Generative Adversarial Nets(原生GAN学习)
学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...
- box-cox 转换
box-cox 由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布. Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性 ...
- proc文件系统、sysfs文件系统、kobject操作
Proc文件系统是提供一个接口给用户,让用户可以查看系统运行的一些状态信息,让用户修改内核的一些参数,比方说printk的打印级别就可以通过proc去修改 Sysfs文件系统, Sysfs is a ...
- 递归与尾递归(C语言)【转】
作者:archimedes 出处:http://www.cnblogs.com/archimedes/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原 ...
- CROSSUI桌面工具 分布加载模块(Distributed UI Module) 与 主模块Module 之间数据传输!
CROSSUI 基于 NW,如何在模Module 之间(主index.js and module1.js)传输数据? http://www.crossui.com/Forum/post577.htm ...
- 如何在windows上调试安卓机谷歌浏览器上的页面
- 下面的方法仅在windows和安卓机上测试过,,,, - 手机(安卓机)需要安装chrome与电脑(Windows)上的chrome配合,也就是只能调试谷歌浏览器上的页面 1.手机的准备工作 打开 ...
- layui上传文件配合进度条
首先看一下效果图: 修改layui的源文件upload.js 1.打开layui/modules/upload.js 2.搜索ajax 3.找到url: 4.添加以下代码: ,xhr:l.xhr(fu ...