python之pandas用法大全
更新时间:2018年03月13日 15:02:28 投稿:wdc 我要评论

本文讲解了python的pandas基本用法,大家可以参考下

一、生成数据表
1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:
?
1
2
import numpy as np
import pandas as pd
2、导入CSV或者xlsx文件:
?
1
2
df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))
3、用pandas创建数据表:
?
1
2
3
4
5
6
7
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','210-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age','price'])
二、数据表信息查看
1、维度查看:
?
1
df.shape
2、数据表基本信息(维度、列名称、数据格式、所占空间等):
?
1
df.info()
3、每一列数据的格式:
?
1
df.dtypes
4、某一列格式:
?
1
df['B'].dtype
5、空值:
?
1
df.isnull()
6、查看某一列空值:
?
1
df.isnull()
7、查看某一列的唯一值:
?
1
df['B'].unique()
8、查看数据表的值:
?
1
df.values
9、查看列名称:
?
1
df.columns
10、查看前10行数据、后10行数据:
?
1
2
df.head() #默认前10行数据
df.tail() #默认后10 行数据
三、数据表清洗
1、用数字0填充空值:
?
1
df.fillna(value=0)
2、使用列prince的均值对NA进行填充:
?
1
df['prince'].fillna(df['prince'].mean())
3、清楚city字段的字符空格:
?
1
df['city']=df['city'].map(str.strip)
4、大小写转换:
?
1
df['city']=df['city'].str.lower()
5、更改数据格式:
?
1
df['price'].astype('int')
6、更改列名称:
?
1
df.rename(columns={'category': 'category-size'})
7、删除后出现的重复值:
?
1
df['city'].drop_duplicates()
8、删除先出现的重复值:
?
1
df['city'].drop_duplicates(keep='last')
9、数据替换:
?
1
df['city'].replace('sh', 'shanghai')
四、数据预处理
?
1
2
3
4
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})
1、数据表合并
?
1
2
3
4
df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集
df_left=pd.merge(df,df1,how='left') #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer') #并集
2、设置索引列
?
1
df_inner.set_index('id')
3、按照特定列的值排序:
?
1
df_inner.sort_values(by=['age'])
4、按照索引列排序:
?
1
df_inner.sort_index()
5、如果prince列的值>3000,group列显示high,否则显示low:
?
1
df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')
6、对复合多个条件的数据进行分组标记
?
1
df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1
7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
?
1
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))
8、将完成分裂后的数据表和原df_inner数据表进行匹配
?
1
df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)
五、数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
1、按索引提取单行的数值
?
1
df_inner.loc[3]
2、按索引提取区域行数值
?
1
df_inner.iloc[0:5]
3、重设索引
?
1
df_inner.reset_index()
4、设置日期为索引
?
1
df_inner=df_inner.set_index('date')
5、提取4日之前的所有数据
?
1
df_inner[:'2013-01-04']
6、使用iloc按位置区域提取数据
?
1
df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。
7、适应iloc按位置单独提起数据
?
1
df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列
8、使用ix按索引标签和位置混合提取数据
?
1
df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据
9、判断city列的值是否为北京
?
1
df_inner['city'].isin(['beijing'])
10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来
?
1
df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]
11、提取前三个字符,并生成数据表
?
1
pd.DataFrame(category.str[:3])
六、数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。
1、使用“与”进行筛选
?
1
df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]
2、使用“或”进行筛选
?
1
df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age'])
3、使用“非”条件进行筛选
?
1
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id'])
4、对筛选后的数据按city列进行计数
?
1
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()
5、使用query函数进行筛选
?
1
df_inner.query('city == ["beijing", "shanghai"]')
6、对筛选后的结果按prince进行求和
?
1
df_inner.query('city == ["beijing", "shanghai"]').price.sum()
七、数据汇总
主要函数是groupby和pivote_table
1、对所有的列进行计数汇总
?
1
df_inner.groupby('city').count()
2、按城市对id字段进行计数
?
1
df_inner.groupby('city')['id'].count()
3、对两个字段进行汇总计数
?
1
df_inner.groupby(['city','size'])['id'].count()
4、对city字段进行汇总,并分别计算prince的合计和均值
?
1
df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])
八、数据统计
数据采样,计算标准差,协方差和相关系数
1、简单的数据采样
?
1
df_inner.sample(n=3)
2、手动设置采样权重
?
1
2
weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights)
3、采样后不放回
?
1
df_inner.sample(n=6, replace=False)
4、采样后放回
?
1
df_inner.sample(n=6, replace=True)
5、 数据表描述性统计
?
1
df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置
6、计算列的标准差
?
1
df_inner['price'].std()
7、计算两个字段间的协方差
?
1
df_inner['price'].cov(df_inner['m-point'])
8、数据表中所有字段间的协方差
?
1
df_inner.cov()
9、两个字段的相关性分析
?
1
df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关
10、数据表的相关性分析
?
1
df_inner.corr()
九、数据输出
分析后的数据可以输出为xlsx格式和csv格式
1、写入Excel
?
1
df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc')
2、写入到CSV
?
1
df_inner.to_csv('excel_to_python.csv')
以上就是关于pandas的基本用法,大家可以参考下

python之pandas用法大全的更多相关文章

  1. python数据处理 pandas用法大全

    一.生成数据表     1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 1 2 2.导入CSV ...

  2. Python3 pandas用法大全

    Python3 pandas用法大全 一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as ...

  3. pandas用法大全

    pandas用法大全 一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd12 2. ...

  4. pandas用法小结

    前言 个人感觉网上对pandas的总结感觉不够详尽细致,在这里我对pandas做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! pandas用 ...

  5. 基于 Python 和 Pandas 的数据分析(1)

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...

  6. python内置函数大全(分类)

    python内置函数大全 python内建函数 最近一直在看python的document,打算在基础方面重点看一下python的keyword.Build-in Function.Build-in ...

  7. Python基础 — Pandas

    Pandas -- 简介 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.        Pandas ...

  8. Python:pandas(二)——pandas函数

    Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: .. ...

  9. Python回调函数用法实例详解

    本文实例讲述了Python回调函数用法.分享给大家供大家参考.具体分析如下: 一.百度百科上对回调函数的解释: 回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函 ...

随机推荐

  1. Python记录_day21 模块

    引入模块的方式: 1. import 模块 2. from xxx import 模块 一.collections 模块 1.Counter() counter是一个计数器,主要用来计数,计算一个字符 ...

  2. mysql半同步开启

    开启半同步复制 #在有的高可用架构下,master和slave需同时启动,以便在切换后能继续使用半同步复制 /etc/my.cnf plugin-load = "rpl_semi_sync_ ...

  3. chrome 浏览器去掉输入框背景透明色

    chrome浏览器选择记住密码的账号,输入框会自动加上黄色的背景,有些设计输入框是透明背景的,需要去除掉这个黄色的背景: 这个黄色背景是谷歌浏览器默认的样式 user agent stylesheet ...

  4. CSS text-decoration 属性

    定义和用法 text-decoration 属性规定添加到文本的修饰. 注释:修饰的颜色由 "color" 属性设置. 说明 这个属性允许对文本设置某种效果,如加下划线.如果后代元 ...

  5. Eclipse直接打开类文件/文件夹所在的本地目录

    1.Eclipse原生的文件浏览操作 选择项目目录/文件 按 ALT+SHIFT +W , 会弹出菜单点击 System Explorer 就可以打开文件所在的本地目录了: 设置工具目录 Run -- ...

  6. 十八、Spring框架(AOP)

    一.AOP(基于XML方式配置AOP) AOP(Aspect Oriented Program):面向切面编程.思想是:把功能分为核心业务功能和周边功能. 所谓核心业务功能:比如登录,增删改数据都叫做 ...

  7. 自建yum源解决Ceph搭建过程中从官网取包慢的问题

    最近项目组需要ceph环境,第一次搭建ceph,各种不顺,装了卸,卸了装,一遍又一遍地按照官网的操作进行.最气人的是网速差,从官网取包太慢.一轮尝试就浪费一上午. 因此想到本地新建yum源. 首先,按 ...

  8. js之全局变量与window对象

    所有在全局作用域中声明的变量.函数都会变成window对象的属性和方法. 即: var age = 55; 可以通过window.age访问 然而全局变量和与在window对象上定义的属性还是有一点区 ...

  9. Zookeeper面试题

    Zookeeper是什么框架 分布式的.开源的分布式应用程序协调服务,原本是Hadoop.HBase的一个重要组件.它为分布式应用提供一致性服务的软件,包括:配置维护.域名服务.分布式同步.组服务等. ...

  10. windows中mysql5.7保存emoji表情

    1.找到my.ini文件,修改一下配置: [client] default-character-set=utf8mb4 [mysqld] character-set-client-handshake ...