思路

遇到这种利益冲突的最终利益最大化问题

考虑转化为最小割,使得损失的价值最小

相当于文科是S,理科是T,选出最小割就是确定损失代价最小的方案

然后就把S向每个点连一条cap=art[i][j]的边,每个点向T连一条cap=science[i][j]的边,再新建n*m个点表示同选文科的利益,然后S向每个新建点连一条cap=same_art[i][j]的边,然后再从新建点向每个点和它的相邻点向连一条cap=INF的边,然后同选立刻的收益同理新建点再向T连边,相邻点同理的向新建点连边

再跑出最小割即可

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
struct Edge{
int u,v,cap,flow;
};
const int MAXN = 40100;
const int INF = 0x3f3f3f3f;
vector<Edge> edges;
vector<int> G[MAXN];
void addedge(int u,int v,int cap){
edges.push_back((Edge){u,v,cap,0});
edges.push_back((Edge){v,u,0,0});
int cnt=edges.size();
G[u].push_back(cnt-2);
G[v].push_back(cnt-1);
}
int cur[MAXN],dep[MAXN],vis[MAXN],s,t;
int dfs(int x,int a){
if(x==t||a==0)
return a;
int f,flow=0;
for(int &i=cur[x];i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(dep[e.v]==dep[x]+1&&(f=dfs(e.v,min(e.cap-e.flow,a)))>0){
flow+=f;
e.flow+=f;
edges[G[x][i]^1].flow-=f;
a-=f;
if(!a)
break;
}
}
return flow;
}
queue<int> q;
bool bfs(void){
memset(vis,0,sizeof(vis));
dep[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(e.cap>e.flow&&(!vis[e.v])){
vis[e.v]=true;
dep[e.v]=dep[x]+1;
q.push(e.v);
}
}
}
return vis[t];
}
int dinic(void){
int flow=0;
while(bfs()){
// printf("Not Re\n");
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
int n,m,same_wen[110][110],same_li[110][110],wen[110][110],li[110][110],sum=0;
const int mx[] = {0,0,1,-1,0},my[] ={0,1,0,0,-1};
int id(int x,int y,int idx=0){
return (x-1)*m+y+idx*n*m;
}
int main(){
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&wen[i][j]);
sum+=wen[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&li[i][j]);
sum+=li[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&same_wen[i][j]);
sum+=same_wen[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&same_li[i][j]);
sum+=same_li[i][j];
}
// printf("Not Re\n");
s=MAXN-2;//wen
t=MAXN-3;//li
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
addedge(s,id(i,j),wen[i][j]);//wen
addedge(id(i,j),t,li[i][j]);//li
}
for(int i=1;i<=n;i++)//shang
for(int j=1;j<=m;j++){
addedge(s,id(i,j,1),same_wen[i][j]);
addedge(id(i,j,1),id(i,j),INF);
if(i>1)
addedge(id(i,j,1),id(i-1,j),INF);
if(j>1)
addedge(id(i,j,1),id(i,j-1),INF);
if(i<n)
addedge(id(i,j,1),id(i+1,j),INF);
if(j<m)
addedge(id(i,j,1),id(i,j+1),INF);
}
for(int i=1;i<=n;i++)//shang
for(int j=1;j<=m;j++){
addedge(id(i,j,2),t,same_li[i][j]);
addedge(id(i,j),id(i,j,2),INF);
if(i>1)
addedge(id(i-1,j),id(i,j,2),INF);
if(j>1)
addedge(id(i,j-1),id(i,j,2),INF);
if(i<n)
addedge(id(i+1,j),id(i,j,2),INF);
if(j<m)
addedge(id(i,j+1),id(i,j,2),INF);
}
// printf("Not Re\n");
printf("%d\n",sum-dinic());
return 0;
}

P4313 文理分科的更多相关文章

  1. P4313 文理分科 最小割

    $ \color{#0066ff}{ 题目描述 }$ 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格 ...

  2. BZOJ 3894 Luogu P4313 文理分科 (最小割)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894 (luogu) https://www.luogu.org/pro ...

  3. BZOJ 3894 / Luogu P4313 文理分科 (拆点最小割)

    题面 中文题面- BZOJ 传送门 Luogu 传送门 分析 这道题类似于BZOJ 3774 最优选择,然后这里有一篇博客写的很好- Today_Blue_Rainbow's Blog 应该看懂了吧- ...

  4. Luogu P4313 文理分科

    link 最小割 双倍经验 这道题运用了最小割最常用的一种用法:集合划分. 因为源汇最小割即就是将源汇划分到不同的集合,那么最简单的应用就是最小代价划分集合了. 本题中,题意是将 \(n\cdot m ...

  5. BZOJ 3894: 文理分科 [最小割]

    3894: 文理分科 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 674  Solved: 392[Submit][Status][Discuss] ...

  6. Bzoj3894 文理分科

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 667  Solved: 389 Description  文理分科是一件很纠结的事情!(虽然看到这个题 ...

  7. bzoj 3894: 文理分科

    Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位. ...

  8. BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割

    BZOJ_3894_文理分科_最小割 Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...

  9. BZOJ3894文理分科——最小割

    题目描述  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从 ...

随机推荐

  1. pdf转txt

    ubuntu pdf转jpg或txt chenlei posted @ 2009年12月30日 17:22 inLinux , 1818 阅读 呵呵,刚刚在网上定购了一款mp5,后来才发现它不支持PD ...

  2. ResourceExhaustedError 解决方案

    原因:网络层太多,运算量太大导致GPU资源耗尽 解决方案: 1.限制GPU的使用: config = tf.ConfigProto()config.gpu_options.per_process_gp ...

  3. 原生js实现图片轮播效果

    思路:设置父容器(一定宽度,一定高度,相对定位,子容器超出部分进行隐藏),子容器图片并排(浮动,绝对定位,每次点击进行相应的左或右偏移量) 1.html: <!DOCTYPE html> ...

  4. java.security.NoSuchAlgorithmException: AES KeyGenerator not available

    异常信息 Caused by: Java.lang.IllegalStateException: Unable to acquire AES algorithm. This is required t ...

  5. springboot用@Autowired和@PostConstruct注解把config配置读取到bean变成静态方法

    springboot用@Autowired和@PostConstruct注解把config配置读取到bean变成静态方法 @SpringBootApplication public class Sen ...

  6. qq网吧弹框如何去掉?如何删掉NetBar文件夹?

    qq网吧弹框如何去掉?如何删掉NetBar文件夹?有些qq会弹出qq网吧,让人烦恼.而且点了那个不是网吧的反馈了多次都还会弹出.如何退出关闭删除取消去掉qq网吧呢,下面介绍一种解决方法:1.打开qq安 ...

  7. python装饰器介绍

    """装饰器 定义:本质是函数(器:就是函数的意思),功能:装饰其他函数,就是为其他函数添加附加功能 原则: 1. 不能修改被装饰的函数的源代码 2. 不能修改被装饰的函 ...

  8. 爬虫--cheerio

    const cheerio = require('cheerio') const $ = cheerio.load('<h2 class="title">Hello w ...

  9. Git命令cherry-pick,选择把一部分代码提交到另一个分支

    由于对git的使用还不是很熟悉,只是会基本的添加.提交.分支相关简单操作,在开发新需求的时候,需要涉及两个项目,一部分在新项目的新分支上开发的,另一部分是在老项目的老分支上开发的(这里忘了创建新分支) ...

  10. Golang并发编程进程通信channel了解及简单使用

    概念及作用 channel是一个数据类型,用于实现同步,用于两个协程之间交换数据.goroutine奉行通过通信来共享内存,而不是共享内存来通信.引用类型channel是CSP模式的具体实现,用于多个 ...