P4313 文理分科
思路
遇到这种利益冲突的最终利益最大化问题
考虑转化为最小割,使得损失的价值最小
相当于文科是S,理科是T,选出最小割就是确定损失代价最小的方案
然后就把S向每个点连一条cap=art[i][j]的边,每个点向T连一条cap=science[i][j]的边,再新建n*m个点表示同选文科的利益,然后S向每个新建点连一条cap=same_art[i][j]的边,然后再从新建点向每个点和它的相邻点向连一条cap=INF的边,然后同选立刻的收益同理新建点再向T连边,相邻点同理的向新建点连边
再跑出最小割即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
struct Edge{
int u,v,cap,flow;
};
const int MAXN = 40100;
const int INF = 0x3f3f3f3f;
vector<Edge> edges;
vector<int> G[MAXN];
void addedge(int u,int v,int cap){
edges.push_back((Edge){u,v,cap,0});
edges.push_back((Edge){v,u,0,0});
int cnt=edges.size();
G[u].push_back(cnt-2);
G[v].push_back(cnt-1);
}
int cur[MAXN],dep[MAXN],vis[MAXN],s,t;
int dfs(int x,int a){
if(x==t||a==0)
return a;
int f,flow=0;
for(int &i=cur[x];i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(dep[e.v]==dep[x]+1&&(f=dfs(e.v,min(e.cap-e.flow,a)))>0){
flow+=f;
e.flow+=f;
edges[G[x][i]^1].flow-=f;
a-=f;
if(!a)
break;
}
}
return flow;
}
queue<int> q;
bool bfs(void){
memset(vis,0,sizeof(vis));
dep[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(e.cap>e.flow&&(!vis[e.v])){
vis[e.v]=true;
dep[e.v]=dep[x]+1;
q.push(e.v);
}
}
}
return vis[t];
}
int dinic(void){
int flow=0;
while(bfs()){
// printf("Not Re\n");
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
int n,m,same_wen[110][110],same_li[110][110],wen[110][110],li[110][110],sum=0;
const int mx[] = {0,0,1,-1,0},my[] ={0,1,0,0,-1};
int id(int x,int y,int idx=0){
return (x-1)*m+y+idx*n*m;
}
int main(){
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&wen[i][j]);
sum+=wen[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&li[i][j]);
sum+=li[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&same_wen[i][j]);
sum+=same_wen[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&same_li[i][j]);
sum+=same_li[i][j];
}
// printf("Not Re\n");
s=MAXN-2;//wen
t=MAXN-3;//li
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
addedge(s,id(i,j),wen[i][j]);//wen
addedge(id(i,j),t,li[i][j]);//li
}
for(int i=1;i<=n;i++)//shang
for(int j=1;j<=m;j++){
addedge(s,id(i,j,1),same_wen[i][j]);
addedge(id(i,j,1),id(i,j),INF);
if(i>1)
addedge(id(i,j,1),id(i-1,j),INF);
if(j>1)
addedge(id(i,j,1),id(i,j-1),INF);
if(i<n)
addedge(id(i,j,1),id(i+1,j),INF);
if(j<m)
addedge(id(i,j,1),id(i,j+1),INF);
}
for(int i=1;i<=n;i++)//shang
for(int j=1;j<=m;j++){
addedge(id(i,j,2),t,same_li[i][j]);
addedge(id(i,j),id(i,j,2),INF);
if(i>1)
addedge(id(i-1,j),id(i,j,2),INF);
if(j>1)
addedge(id(i,j-1),id(i,j,2),INF);
if(i<n)
addedge(id(i+1,j),id(i,j,2),INF);
if(j<m)
addedge(id(i,j+1),id(i,j,2),INF);
}
// printf("Not Re\n");
printf("%d\n",sum-dinic());
return 0;
}
P4313 文理分科的更多相关文章
- P4313 文理分科 最小割
$ \color{#0066ff}{ 题目描述 }$ 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格 ...
- BZOJ 3894 Luogu P4313 文理分科 (最小割)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894 (luogu) https://www.luogu.org/pro ...
- BZOJ 3894 / Luogu P4313 文理分科 (拆点最小割)
题面 中文题面- BZOJ 传送门 Luogu 传送门 分析 这道题类似于BZOJ 3774 最优选择,然后这里有一篇博客写的很好- Today_Blue_Rainbow's Blog 应该看懂了吧- ...
- Luogu P4313 文理分科
link 最小割 双倍经验 这道题运用了最小割最常用的一种用法:集合划分. 因为源汇最小割即就是将源汇划分到不同的集合,那么最简单的应用就是最小代价划分集合了. 本题中,题意是将 \(n\cdot m ...
- BZOJ 3894: 文理分科 [最小割]
3894: 文理分科 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 674 Solved: 392[Submit][Status][Discuss] ...
- Bzoj3894 文理分科
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 667 Solved: 389 Description 文理分科是一件很纠结的事情!(虽然看到这个题 ...
- bzoj 3894: 文理分科
Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位. ...
- BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割
BZOJ_3894_文理分科_最小割 Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...
- BZOJ3894文理分科——最小割
题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从 ...
随机推荐
- 7.线程id,优先级讲解
1.线程id可以通过Thread对象的getId()方法得到,在线程出了问题,为什么CPU占用这么高的时候,查的时候我们可以在堆栈信息中找到对应线程,然后干掉该线程就好! 2.而线程对象的getNam ...
- python2.7之乱码问题
python 3之后当然不存在乱码问题了.python 2的乱码问题有时就有点头疼了.(代码均为在windows下测试) 示例:保存为test1.py 报错信息如下: 解决办法: 我将代码保存为tes ...
- Latex数学公式中的空格
http://blog.sina.com.cn/s/blog_4ddef8f80100iwwv.html 两个quad空格 a \qquad b 两个m的宽度 quad空格 a \quad b 一个m ...
- 斯坦福大学自然语言处理第四课“语言模型(Language Modeling)”
http://52opencourse.com/111/斯坦福大学自然语言处理第四课-语言模型(language-modeling) 一.课程介绍 斯坦福大学于2012年3月在Coursera启动了在 ...
- PowMod (欧拉推式子 + 指数循环节)
最主要的步骤是用 1式子和2式子推 3式子.(难点,看了很多博客最后的时候那个式子看不懂) 当n, m互质时即gcd(n, m) == 1,存在phi(n * m) = phi(m) * phi(n) ...
- ReactiveCocoa(II)
RAC类关系图: RAC 信号源: 需要导入的头文件: import ReactiveCocoa import Result import ReactiveSwift 冷信号 //1.冷信号 let ...
- 关于this指向性的问题
函数调用 首先需要从函数的调用开始讲起. JS(ES5)里面有三种函数调用形式: func(p1, p2) obj.child.method(p1, p2) func.call(context, p1 ...
- 20165305 苏振龙《Java程序设计》第四周学习总结
第五章 继承: 面向对象中,为避免多个类间重复定义共同行为.(简单说就是将相同的程序代码提升为父类.) 特点: 这里接触到了新的关键词,extends,在java语言中用estends来继承父类的行为 ...
- hive的find_in_set函数
集合查找函数: find_in_set语法: find_in_set(string str, string strList) 返回值: int说明: 返回str在strlist第一次出现的位置,str ...
- Sqoop 学习之路
sqoop 基础知识和基本操作可以参考这篇博客:https://www.cnblogs.com/qingyunzong/p/8807252.html#_label3