转载自:優YoU  http://user.qzone.qq.com/289065406/blog/1303946967  

以下内容属于以上这位dalao

http://poj.org/problem?id=1426

题意

给出一个整数n,(1 <= n <= 200)。求出任意一个它的倍数m,要求m必须只由十进制的'0'或'1'组成。

分析

首先暴力枚举肯定是不可能的 1000ms 想不超时都难,而且枚举还要解决大数问题。。

要不是人家把这题放到搜索,怎么也想不到用BFS。。。

解题方法: BFS+同余模定理

不说废话。

 

首先说说朴素的不剪枝搜索方法:

我以n=6为例

首先十进制数,开头第一个数字(最高位)一定不能为0,即最高位必为1

设6的 ”01十进制倍数” 为k,那么必有k%6 = 0

现在就是要用BFS求k值

1、先搜索k的最高位,最高位必为1,则此时k=1,但1%6 =1  !=  0

因此k=1不是所求,存储余数 1

2、搜索下一位,下一位可能为0,即 k*10+0,此时k=10,那么k%6=4

可能为1,即 k*10+1,此时k=11,那么k%6=5

由于余数均不为0,即k=10与k=11均不是所求

3、继续搜索第三位,此时有四种可能了:

对于k=10,下一位可能为0,即 k*10+0,此时k=100,那么k%6=4

下一位可能为1,即 k*10+1,此时k=101,那么k%6=5

对于k=11,下一位可能为0,即 k*10+0,此时k=110,那么k%6=2

下一位可能为1,即 k*10+1,此时k=111,那么k%6=3

由于余数均不为0,即k=100,k=101,k=110,k=111均不是所求

4、继续搜索第四位,此时有八种可能了:

对于k=100,下一位可能为0,即 k*10+0,此时k=1000,那么k%6=4

下一位可能为1,即 k*10+1,此时k=1001,那么k%6=5

对于k=101,下一位可能为0,即 k*10+0,此时k=1010,那么k%6=2

下一位可能为1,即 k*10+1,此时k=1011,那么k%6=3

对于k=110,下一位可能为0,即 k*10+0,此时k=1100,那么k%6=2

下一位可能为1,即 k*10+1,此时k=1101,那么k%6=3

对于k=111,下一位可能为0,即 k*10+0,此时k=1110,那么k%6=0

下一位可能为1,即 k*10+1,此时k=1111,那么k%6=1

我们发现k=1110时,k%6=0,即1110就是所求的倍数

 

从上面的演绎不难发现,用BFS是搜索 当前位数字 (除最高位固定为1),因为每一位都只有0或1两种选择,换而言之是一个双入口BFS

本题难点在于搜索之后的处理:对余数的处理,对大数的处理,余数与所求倍数间的关系

 

接下来说说处理大数问题和剪枝的方法:

首先我们简单回顾一下 朴素搜索 法:

n=6

 

1%6=1  (k=1)

{

(1*10+0)%6=4  (k=10)

{

 (10*10+0)%6=4   (k=100)

{

  (100*10+0)%6=4  (k=1000)

        (100*10+1)%6=5  (k=1001)

}

    (10*10+1)%6=5  (k=101)

{

  (101*10+0)%6=2  (k=1010)

        (101*10+1)%6=3  (k=1011)

}

}

   (1*10+1)%6=5  (k=11)

{

    (11*10+0)%6=2   (k=110)

{

    (110*10+0)%6=2  (k=1100)

        (110*10+1)%6=3  (k=1101)

}

 (11*10+1)%6=3   (k=111)

{

        (111*10+0)%6=0  (k=1110)   有解

        (111*10+1)%6=1  (k=1111)  由于前面有解,这个余数不存储

}

}

}

从上面可以看出余数的存数顺序(逐层存储):

用数组mod[]存储余数,其中mod[0]不使用,由mod[1]开始

那么mod中的余数依次为: 1 4 5 4 5 2 3 4 5 2 3 2 3 0  共14个

即说明我们得到 余数0 之前,做了14步*10的操作,那么当n值足够大的时候,是很容易出现k为大数的情况(事实上我做过统计,200以内的n,有18个n对应的k值为大数

那么我们再用int去存储k就显得不怎么明智了。

为了处理所有情况,我们自然会想到 是不是应该要用int[]去存储k的每一位?

而又由于k是一个01序列,那能不能把 *10得到k每一位的问题 转化为2的操作得到k的每一位(0或1) 呢?

答案是可以的

首先我们利用 同余模定理 对得到余数的方式进行一个优化

(a*b)%n = (a%n *b%n)%n

(a+b)%n = (a%n +b%n)%n

随便抽取上面一条式子为例

前一步 (11*10+0)%6=2   即k=110 , k%6=2

当前步 (110*10+0)%6=2

由同余模定理  (110*10+0)%6 = ((110*10)%6+0%6 )%6 = ((110%6 * 10%6)%6 +0)%6

不难发现下划线部分110%6等于 (11*10+0)%6 = 2

所以当前步(110*10+0)%6可以转变为  (2*10+0)%6=2

 

很显然地,这种处理把k=110 等价于 k=2

即用 前一步操作得到的余数 代替 当前步的k

而n在200的范围内, 余数值不可能超过3位数, 这就解决了 大数的问题

 

通过这种处理手法,我们只需在BFS时顺手存储一个 余数数组mod[] ,就能通过mod[i/2]得到mod[i]  ,直到mod[i]==0 时结束,大大减少了运算时间

前面已经提到,n=6时,求余操作进行了14次,对应地,BFS时*10的操作也进行了14次。

令i=14,通过观察发现,i%2恰好就是 6 的倍数的最低位数字

i/2  再令 i%2 ,恰好就是 6 的倍数的 次低位数字。。。

循环这个操作,直到i=0,就能得到 6的 01倍数(一个01队列),倒序输出就是所求

这样就完成了 *10操作到 %2操作的过渡

由于n值有限,只是1到200的整数,因此本题也可以用打表做,通过上面的方法得到结果后,就把1~200的倍数打印出来,重新建立一个程序,直接打表就可以了。

不过打表比上面介绍的方法快不了多少

//Memory Time
//2236K 32MS #include<iostream>
using namespace std; int mod[]; //保存每次mod n的余数
//由于198的余数序列是最长的
//经过反复二分验证,436905是能存储198余数序列的最少空间
//但POJ肯定又越界测试了...524286是AC的最低下限,不然铁定RE int main(int i)
{
int n;
while(cin>>n)
{
if(!n)
break; mod[]=%n; //初始化,n倍数的最高位必是1 for(i=;mod[i-]!=;i++) //利用同余模定理,从前一步的余数mod[i/2]得到下一步的余数mod[i]
mod[i]=(mod[i/]*+i%)%n;
//mod[i/2]*10+i%2模拟了BFS的双入口搜索
//当i为偶数时,+0,即取当前位数字为0 。为奇数时,则+1,即取当前位数字为1 i--;
int pm=;
while(i)
{
mod[pm++]=i%; //把*10操作转化为%2操作,逆向求倍数的每一位数字
i/=;
}
while(pm)
cout<<mod[--pm]; //倒序输出
cout<<endl;
}
return ;
}

POJ - 1426 Find The Multiple(搜索+数论)的更多相关文章

  1. POJ 1426 Find The Multiple(数论——中国同余定理)

    题目链接: http://poj.org/problem?id=1426 Description Given a positive integer n, write a program to find ...

  2. poj 1426 Find The Multiple 搜索进阶-暑假集训

    E - Find The Multiple Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I6 ...

  3. POJ 1426 Find The Multiple --- BFS || DFS

    POJ 1426 Find The Multiple 题意:给定一个整数n,求n的一个倍数,要求这个倍数只含0和1 参考博客:点我 解法一:普通的BFS(用G++能过但C++会超时) 从小到大搜索直至 ...

  4. 广搜+打表 POJ 1426 Find The Multiple

    POJ 1426   Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25734   Ac ...

  5. POJ 1426 Find The Multiple(寻找倍数)

    POJ 1426 Find The Multiple(寻找倍数) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 Given ...

  6. POJ.1426 Find The Multiple (BFS)

    POJ.1426 Find The Multiple (BFS) 题意分析 给出一个数字n,求出一个由01组成的十进制数,并且是n的倍数. 思路就是从1开始,枚举下一位,因为下一位只能是0或1,故这个 ...

  7. DFS/BFS(同余模) POJ 1426 Find The Multiple

    题目传送门 /* 题意:找出一个0和1组成的数字能整除n DFS:200的范围内不会爆long long,DFS水过~ */ /************************************ ...

  8. POJ 1426 Find The Multiple (DFS / BFS)

    题目链接:id=1426">Find The Multiple 解析:直接从前往后搜.设当前数为k用long long保存,则下一个数不是k*10就是k*10+1 AC代码: /* D ...

  9. [深度优先搜索] POJ 1426 Find The Multiple

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28550   Accepted: 118 ...

随机推荐

  1. PyXB: Python XML Schema Bindings

    http://pyxb.sourceforge.net/ PyXB (“pixbee”) is a pure Python package that generates Python source c ...

  2. Rabbitmq vs. kafka

    https://mp.weixin.qq.com/s/2i_9TWoF3TsJvG6Dj_75vw http://www.cnblogs.com/valor-xh/p/6348009.html htt ...

  3. Oracle 和 SQLSERVER 重新获取统计信息的方法

    1. Oracle 重新获取统计信息的命令 exec dbms_stats.gather_schema_stats(ownname =>) # 需要修改 ownername options 指定 ...

  4. Jquery ajax load(),get(),post()

    //load()用来加载html文档中的代码片段,添加到指定元素内部 //如果只加部分选定的元素可以.load("url 选择器") <!DOCTYPE html>&l ...

  5. MES模块

    基础数据管理:产品模型.工厂模型.工艺模型 仓储管理 成本管理 绩效管理 看板管理 日志管理 设备管理:工装管理.设计器具管理.设备保养管理.设备备件管理.设备采集管理.设备点检管理.设备故障管理.设 ...

  6. hihocoder #1236 Scores (15北京赛区网络赛J) (五维偏序,强制在线,bitset+分块)

    链接:http://hihocoder.com/problemset/problem/1236 思路; 有n个五维的向量,给出q个询问,每个询问是一个五维向量,问有多少个向量没有一维比这个向量大.并且 ...

  7. bzoj2142: 礼物

    2142: 礼物 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会 ...

  8. 自学Zabbix之路15.4 Zabbix数据库表结构简单解析-Expressions表、Media表、 Events表

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 自学Zabbix之路15.4 Zabbix数据库表结构简单解析-Expressions表.Medi ...

  9. BZOJ 2929: [Poi1999]洞穴攀行

    2929: [Poi1999]洞穴攀行 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 351  Solved: 195[Submit][Status][ ...

  10. luogu4197 Peaks (kruskal重构树+主席树)

    按照边权排序建出kruskal重构树,每次就变成了先找一个权值<=x的最远的祖先,然后看这个子树的第k小.离散化一下,在dfs序上做主席树即可 而且只需要建叶节点的主席树 注意输出的是第k小点的 ...