tensorflow的tile使用
当你需要按照矩阵维度复制数据时候,可以使用tensorflow的tile函数
a1 = tf.tile(a, [2, 2]) 表示把a的第一个维度复制两次,第二个维度复制2次。
注意使用tf.nn.softmax(r, axis=0),表示对每一列取softmax,一定要注意维度,axis=0表示对列取softmax,不然数据会出错
def tensoflow_test():
# 一个batch有20个样本,每个样本的长度为5,每一个为200维度
lstm_outpus = tf.truncated_normal(shape=[2, 5, 4], mean=0, stddev=1)
# 变形成二维
lstm_o = tf.reshape(lstm_outpus, shape=[-1, 4])
# 经过非线性
M = tf.tanh(lstm_o)
# 初始化权重信息
w = tf.truncated_normal(shape=[4,1], mean=0, stddev=1)
# 权重tf.matmul(M, w)
r = tf.matmul(M, w)
a = tf.nn.softmax(r, axis=0)
alpha = tf.tile(a, (1, 4))
# attention_res = lstm_o * alpha # M = tf.reshape(t, shape=[-1, 200])
# o = tf.Variable(tf.truncated_normal([1, 200]), name='w', dtype=tf.float32)
# a = tf.Variable(tf.truncated_normal([2,3]), dtype=tf.float32)
# b = tf.Variable(tf.truncated_normal([2,3]), dtype=tf.float32)
# a_b = tf.multiply(a,b)
# # a_b = a * b
# w = tf.transpose(o)
# res = tf.matmul(M, w)
# res2 = tf.reshape(res, shape=[-1, 5])
# copy_res = tf.tile(res2, (3,1))
# init_op = tf.global_variables_initializer() with tf.Session() as sess:
# sess.run(init_op)
# print(sess.run(res))
# print(sess.run(res2))
# print(res2)
# print(sess.run(copy_res))
# print(copy_res)
# print(sess.run(lstm_o))
# print(sess.run(lstm_outpus))
# print(sess.run(w))
print(lstm_outpus)
print(lstm_o)
print(alpha)
# print(sess.run(lstm_outpus))
print(sess.run([a, alpha]))
# print(sess.run(alpha))
# print(sess.run(alpha))
# print(sess.run(attention_res))
tensorflow的tile使用的更多相关文章
- TensorFlow学习笔记(一):数据操作指南
扩充 TensorFlow tf.tile 对数据进行扩充操作 import tensorflow as tf temp = tf.tile([1,2,3],[2]) temp2 = tf.tile( ...
- [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念
[阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 目录 [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 0x00 摘要 0x01 矩阵乘积 1.1 matmul pr ...
- 【学习笔记】tensorflow基础
目录 认识Tensorflow Tensorflow特点 下载以及安装 Tensorflow初体验 Tensorflow进阶 图 op 会话 Feed操作 张量 变量 可视化学习Tensorboard ...
- tensorflow函数/重要功能实现
一.基础函数 1.1 .tf.reduce_sum(input_tensor, axis) Computes the sum of elements across dimensions of a ...
- Tensorflow --BeamSearch
github:https://github.com/zle1992/Seq2Seq-Chatbot 1. 注意在infer阶段,需要需要reuse, 2.If you are using the Be ...
- 第七节,TensorFlow编程基础案例-TensorBoard以及常用函数、共享变量、图操作(下)
这一节主要来介绍TesorFlow的可视化工具TensorBoard,以及TensorFlow基础类型定义.函数操作,后面又介绍到了共享变量和图操作. 一 TesnorBoard可视化操作 Tenso ...
- tensorflow faster rcnn 代码分析一 demo.py
os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...
- 深度学习原理与框架-递归神经网络-RNN_exmaple(代码) 1.rnn.BasicLSTMCell(构造基本网络) 2.tf.nn.dynamic_rnn(执行rnn网络) 3.tf.expand_dim(增加输入数据的维度) 4.tf.tile(在某个维度上按照倍数进行平铺迭代) 5.tf.squeeze(去除维度上为1的维度)
1. rnn.BasicLSTMCell(num_hidden) # 构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, ...
- Tensorflow基本概念
[本文摘自网络,仅供学习使用] 官网上对TensorFlow的介绍是,一个使用数据流图(data flow graphs)技术来进行数值计算的开源软件库.数据流图中的节点,代表数值运算:节点节点之间的 ...
随机推荐
- 基于Ubuntu部署 memcached 服务
系统要求:Ubuntu 16.04.1 LTS 64 位操作系统 安装并启动 memcached 服务 安装 memcached 使用apt-get安装 memcached sudo apt-get ...
- 使用jmeter往指定文件中插入一定数量的数据
有一个需求,新建一批账号,把获取的账号相关信息存入文本文件,当文本文件保存的数据达到一定的数量,就自动停止新建账号. 分析下需求: 1.把账号信息保存到文件,需要使用bean shell脚本(bean ...
- CentOS 7 安装SVN并整合HTTP访问
#!/bin/bash## -------------------------------------------------## 安装svn并整合http访问## ----------------- ...
- MySql事务select for update及数据的一致性处理讲解
MySQL中的事务,默认是自动提交的,即autocommit = 1: 但是这样的话,在某些情形中就会出现问题:比如: 如果你想一次性插入了1000条数据,mysql会commit1000次的, 如果 ...
- linux每日命令(35):grep命令
Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来.grep全称是Global Regular Expression Print,表示全局正则表达 ...
- 安装polyglot出错
安装polyglot出错 错误 Complete output from command python setup.py egg_info: Traceback (most recent call l ...
- 【iCore1S 双核心板_FPGA】例程十六:基于SPI的ARM与FPGA通信实验
实验现象: 核心代码: int main(void) { int i,n; ]; ]; HAL_Init(); system_clock.initialize(); led.initialize(); ...
- 【GMT43智能液晶模块】例程三:CAN通信实验
实验原理: STM32F429自带有CAN通信接口,本例程通过CAN1与芯片SN65HVD230相连 实现CAN通信,通过回环测试以验证CAN通信功能. 实验现象: 源代码下载链接: 链接:http: ...
- Error: parent directory is world writable but not sticky
在本地安装pyenv的时候,出现了如下的报错: ➜ brew install pyenv ==> Downloading https://github.com/yyuu/pyenv/archiv ...
- linux 常用命令1【转】
1.1. 关机 shutdown -h now 关闭系统(1) init 0 关闭系统(2) telinit 0 关闭系统(3) shutdown -h hours:minutes & 按预定 ...