mysql 优化
1、存储过程造数据
- CREATE DEFINER=`root`@`localhost` PROCEDURE `generate_test_data`(`n` int)
- begin
- declare i int;
- DECLARE max_id bigint;
- set i=1;
- select max(dmId) into @max_id from wt_wallet ;
- set autocommit = 0;
- while i<=n do
- #生成 供应商 应收 对账 提现 钱包
- INSERT INTO `ppcs_test_v1`.`wt_wallet` (`dmId`, `owner_type`, `owner_id`, `owner_name`, `item_id`, `item_name`, `item_amount`, `payer_type`, `payer_id`, `create_time`, `create_by`, `update_time`, `update_by`)
- VALUES (@max_id+(i-1)*3+1 , '1', 1718683099023360 + i, concat('供应商', i), '1', '应收', RAND()*10000, '2', 1707710161422336, now()*1000, NULL, NULL, NULL);
- INSERT INTO `ppcs_test_v1`.`wt_wallet` (`dmId`, `owner_type`, `owner_id`, `owner_name`, `item_id`, `item_name`, `item_amount`, `payer_type`, `payer_id`, `create_time`, `create_by`, `update_time`, `update_by`)
- VALUES (@max_id+(i-1)*3+2, '1', 1718683099023360 + i, concat('供应商', i), '0', '对账中', RAND()*10000, '2', 1707710161422336, now()*1000, NULL, NULL, NULL);
- INSERT INTO `ppcs_test_v1`.`wt_wallet` (`dmId`, `owner_type`, `owner_id`, `owner_name`, `item_id`, `item_name`, `item_amount`, `payer_type`, `payer_id`, `create_time`, `create_by`, `update_time`, `update_by`)
- VALUES (@max_id+i*3, '1', 1718683099023360 + i, concat('供应商', i), '4', '提现', RAND()*10000, '2', 1707710161422336, now()*1000, NULL, NULL, NULL);
- #RAND()*10000生成10000以内的随机数
- if i%1000 = 0 then
- COMMIT;
- end if;
- set i=i+1;
- end while;
- set autocommit = 1;
- end
2、碎片整理:optimize table table_name;
3、分析表 analyze table table_name;
4、explain select sql 语句
5、procedure analyse() 优化表结构
6、 delete update 后面可以加上 limit 限制,防止 批量删除出错 或 误删除。
而且数据量 大的时候可能 导致 未走索引, 网友说是因为“MYSQL会自动判断最优的执行计划,可能你不加limit的时候数据量增到导致MYSQL判断你索引不是最优计划,从而不走,FORCE INDEX 可以走你的想法”
- EXPLAIN update wt_bldgl_income t force index(idx_wt_bldgl_income_rel_time) set t.stat = 3 ,t.update_time = 1467365030000 where t.release_time < 1467540146000 and t.stat = 1 ;
- EXPLAIN update wt_bldgl_income t set t.stat = 3 ,t.update_time = 1467365030000 where t.release_time < 1467540146000 and t.stat = 1;
- EXPLAIN update wt_bldgl_income t set t.stat = 3 ,t.update_time = 1467365030000 where t.release_time < 1467540146000 and t.stat = 1 limit 1000 ;
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA0IAAABbCAIAAADRDaLtAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nO3df3gTZb4o8G84fbDlx+MPQHQXqDRJrbVn7ylHtJu6BS0CSS9SOZrCPUqx1GShxUaxLApsRQvLaakktKCNpUs568FWZStskxaoSs9tF9GVq4ZuaSZAvSIgsldUCpU27/1jJskkmfxskpkp38/T5yF559d3vjPvzJv3nQQJIQSQl4qqnXyH4NOa1Sv5DgEhhBBC/IvjOwDhEmZrScjtS4QQQgjFUtxvXt7PdwwuC8Z/zXcIIoAtOeET5mcAhBBCI0zcB79fwHcMjIdfOQAAq3VavgMBAKjS1/Idgk+CSpFAggEhxSPkkwchhNBIEgcA3w/w/3jcLTdJnK/7+/t5jET4hJCfMWPGOF9jPL4iQQghhKIqjgDY+Q4CAPhvSCKEEEIIicooIGAXwJ+zHUeEwW/SzFqJ1sx6Txky3d4DUIZMiQ+ZBmqYx4zv3DAEFQwRUjzDPL4IIYRQkEYRADsh4f+1/XZBjXVYayDE7n7r4/suTIjfOzFlKLfoS5WBMqvQW+lVWfUK9mv2ipxtPY9WoH/8ZcUF4wkmEoQQQiiqRhGAIeL1d3DFlFVm1+uHt9u8ZxgXN2Vc3JRFb/7tdynM63FxU8bFrTnItcJAf36bcQd1t+gOst6f2vmI23tCTu185BYfHtl5KqI3Y3OlLm19iYzdCpPruowqz962Lp3cOZX92rkebT400Buz6i2qEBpyQssPdziuTep0OrfNucLlDCusgPzmxyMj3unxjD+8nHhHghBCCEXVKOBqxrUfsCyBzYnj4xLHxyUuehOOPT+Lfj0+LjF7+ykCQ3aApw+c+mHQ46/+aSD2cJpxToQQuzvbzsoTm4qz2UUEPOciMHPTp5cuXbp06dKnm2ayXwN7zoO6W2+9VXfQHpCvfFGGcjDVKoEyZDpbYcSqV2hMjtt4Z4kMAAL3xilrHXOCLEetsPQGPdYatfwc1N1KC5whwhrE9J4GhDg22ZgPRFl16dKlS435Mzd9eqlVm5hd1UjUc3fa3MNiNOaD1wqD4C8eev9Z5QQIse2c62M3bdYTYYXgGQlCCCEUbXGEfjSN7dT2mhNPVB569lW9j4UI2AHgjwuS/sgxcXGO1wqDQNxbcqwph7evu2f1d3cRYntDef/6T5zlExrof2eWHzP/Fgh8sv6+CeucU12vZ5bTd9ZTbyjvXw9Ll86E4XSaVOq6jCAxgkJv7cxpyZS4etckRgAA0JhIrRKA7o3TOZdzvVZwZNXa3ZWWKws2hqjlp0X53XdVAIefn5j3nPK71+aEEc/h5ycu3gMADRO6Z8785JP7JgDAUuWh556D11QEHMPn2VXHrMrth7TFBADcGz7ENVe42EufekN5f+/q74oJ66jbCRByl9Z87A3lhOfId6/NcQTNws4VLH07+GQghBBCsRNHD6qyUA3a58ljPVMIVT83ZfMxj/mfefP717MAgAAsO3BS7/mEWIcu7jDxWGFQPAZVna9P1VbB26ZsYntDVQw1Fy8m0YWqHTJTVbZrgVMAM8s/NmmT6KnFUMN6Td+/p2tNF7Vwqla1pxfCbybUElJqMFhLSpQAUNJJSrhnk7Em0R13zq43b2atyqK3Bv9TY1HLTxW96mzVUqiibCQ7KfR4sqsufpyseqB39cUiSlW88GOTbMckE0X9HWSEmZWel97aKYpdxl5hpJpx07Wrl06qekO1kFXuiGS61nQRgBCSXXXxYhWzwKlaVXHvPfckF1Vpk7hXiRBCCAlF3M92ONvv+s22s28+vfkY3Jsz6my/dE7zEEcfRD+cBYABgN0L7t7Nscb/OUdyNvTf7bo9gXkxODj4ww8/OMv16z/ZC5P2wIwNH7zz0F/mTXr1M8eUSXT/yZJdtvLZcGVg6JNXH5i03rmc6/WMDVdYK7wyMATX2QUhMtAdcDodgMZkTS1nPewGAHRnnNyQ6VkM7J45VpcdgFkrUYGJ+G7keYtmfgAAPnp/z4z5H0z0m6SxY8fSLzyOF0DfX/Z9Ap8tfjZxw9AQXPnhynW4PjAgS7z9yxMW2V0eK/UKiw5oWejHx3c8M5dtGHrh/RMAA9vnLfZKD8zY8ME7yxIdse9+4mGqyFY+u2/3E/O2b3VNCCcShBBCKNroQVVXV8P/taZt/s+0t2x2O7HuezRl59885n9m89nX7wcAAvDkgcP/4dkbd+x3cZ2EhDWo6mpK2lmPpr1itS7fvfvMsmWzwA5LG61LvRe12+0wlTWpb7e6FCqbWLdg1gqdT0mFHCHNrQOOMpSzGmQAlCGzEty64ihDZn53GlggLS21tNarrca04WoDfu3VTbTy07dbPWfTcYDFddbGWRB8jtzm7Gu3knRYXJRtLdz7GTwsBYDFi61vv/3qXgAA6V5YXGd9dRbAkQ3q04WVQNLXHS6yzTk8x1p4Wl0KlU3T69Sn7eEfH694AKYubWzs262uS3Tk4MgG+Q7pYVcC7HY7s/Owrm5dz/LH6w83LWus2K2WSmHd4aZw2nIIIYRQLMQRgCFWs+tf/7ATPlzxJyBDdtnC5usLvZewkyEAIAT+tGDOnzjWqJpLhkK/CfsaVG3IS950HGDTJoC8ukOyHY9sOu62XF5d76uJDXmexTBHvsljrizndsgwx8goprdNo/f18KBzJoXe2lnakpkPpaWQL5F0sVp9lCFT3qS2htQPR4tWfqblN/bmA0DHBrl8x7pDjflBtl/Y8fR9SElVyUBBVuG69JNQwazklVde6WvIq5ve+GoWPX/HoZOqwmnTEhsbATo2pEsTCTkNAIRkvdKYNczj47V0x4Y5m47n1THlfadPwvGTH57Jd+xfx4bkwsb0dYd6exMBIP8Q5JXunt2Yn9/Ym9/XkCeXH08PIRkIIYRQ7MQRgEGP2x4BO5BBQj59cXTZWx7zF278aud9ADB7Z8tXvv6DdjI4jGfjiHtf2VN7e55yvunbsyPP2LMxy/V+Sb3dbp/qmqlvz5K1tmToheRkacHGpd4dcnZCvwm3t0crkRgVeishMgCgDJk6FfPVBobGRPexuWYC+huodBedWSuRqAA0JpLbrOsC6HIOtir0Vj+Pz7mJZn4AAB7caMxLef3D008t9d108fhmqLP8NJFm3WXbRNntdKY/2pB3pmDv0kToqNt0HIz2jzaktGf3FJzZASv2TqUX7DjUmJy90T68I+MrHoCOspTXpcaX0tuZdXfUbUo2tklfr/voKSZTD27s6dnozEFH3abkFT1MbM7UBR8XPkaHEEIoZkb5nfprTcfPLV85//bPZ8pbq6et/BRaqx+rPgfU+4+Nzpk26/0zAABwpnr1Y9XnIhtj354lKSkpKSllRwLOtBa27C2QAkgLCmBtSkpKWUdkQ4Fa1k+KAAC4fmjE9XMiSs+ZXJS1hBBCapWOV07BtuE4RCQ/fXuWON707Xm9MV05K6zup6ylbm2/I+2NxzfPK+voKGuXvpQOAADp0sSOerOyIMu5sd6XCrJYy7AiGb6OMg0Y97pi6ijT9L5UkJW4dAVoWFvpKEsp6+jbs2TJnr6sjT3Z7SlL9vQx5cwrhBBCSHji/E79qzFrtFtnExT+GuDTFx+Fhp/vg9a/AgDIFv75Z3rs9Vz9rK2wq2qbefVj1S/8edWdkYivLCWlMf2ltp6eRADo27NksyalkT09zwjQUZaicc0E9F03cenenqXQUZaSogHIM/ZsTNyzZN5memhRk9JIl2XBsMhKOmv9vXeWdg5vO35ELj9Lt0iXpKRomKV6/PTEBafPdvx4Y/KKnp6CPUvmta/oKTizxEZPOdIOKzYmAtCR9b7Utjd6A5ZZG3uywLHPfXuWaIDZtayNxvaUlDJjz8YspjgL9rzOXqhvz5K1sKVny5ElKWUrhn2uIIQQQpEXB4QMeXwlwQ5ghyE7ISSj8MiRR1332NYddx0gdjJj00A6kCG7bAp5tHDaataShS+fkQ5BccV7jkfogscaimIPYJV1d5c5iwgBdW33y79xTPzqP/+9ntjtv3GbiV4TM7L2IDMJ7HZ48q3uJ933c1gP0vMnOvmxT2UnKJTceM5L//wvs+ojv0+lftv98oN2IPJGTUpj+outZU89CXa7/b9fTtVCbfdbv6FXMDVRflw7L2UzAKhru4dzbDiWJQQaNSmN6trulx90TH6wrLv25dSU39d2v/xWN4DdDq4IaOkvtk61T32SnirOcwUhhNCIJvnu6lDXhUG+wwDF5LjcLX9ZMP7r4hXL+vr4H8Y6YPpwzeqVfEfBoaJq5wLVQ3xHAYmJiTWv7wYAgRwv4cRDRyLMkwchhNAI4/lNVb74+ooD8iaE/Pj+SgE/hBMPfsUBIYRQzMQRIoxmHCsEITQLhExo+cF4EEIIIV7Q/xkXD824FbMyVle/IfvVv9Bv2b1x2J/hnxDyw+79wng4I0EIIYSiLQ4IsfPSG0fg7W1b1SWrmZacj684IG9Cyw/GgxBCCPFC8h9bd/Cy4c2b9d2W/5798KK582ZPm/pLXmLwT5hPqVdU+frVZYQQQgjdWCR8jQH9ctq/nP3q/3xz7kL+slXlr6594P4ZvISBEEIIISRS/v8Xh6j7xZ2TG3ZXr9+w5eNjn/EbCUIIIYSQuPDcjANsySGEEEIIhYX/ZhxgSw4hhBBCKHSCaMYBwB2TJ9XXbcOWHEIIIYRQkHw242w229fXIHp/Q+6/92u322+/feIbr1eUrtty4H9/ZrPZYrH3IiTGzIglZrHEKQqYzOEbwTkU1K4JKhi+YBIiKMbJ5L83jm7DDQ0NDQ0NTZp4W+32Vys3bvn8i26+40IIIYQQEjSem3HsNtzg4ODQ0NDEibdtr1z/2jYjjq4ihBBCCPnBZzPOuw03ODg4ODg4YcKtr20tW79hC4+xIYQQQggJXByP23a24b7++ptJkyYMDg7+2/8qYiYNXE1ISOAxNoQQQgghgQuiN85myE3I3OX9xF6bdupDhjPD2LazDfevD8w3mdsHBwclEsnTKwr/60BTwx/1h9qaQlmZWSvRmocRzEhEGTI5k4K54gNlyJRkGiiI0HHxtRIBElGoghXBHIq0+lOGTIlEIsrQEYoqPgdVnW24/zrQtKli5+DgYGV5aeUrOJaKEELIhTLk69JMhJBaJd+hjHxMi9kBW85CF0QzTlrSfLVzuTTy23a24dLvmzFl2pTPPvvytttumTJtyiHTwchvzJOfT7di6TwQS5xsYow5QmQlnaSzRMZ3GAiJkLW7S5Eq5zuKG4jGRBx8tZxv4Iu5wMRdG7jua1pvv99FBwCG4HQ//BzWhqfIk9Pvn1/xbtPY1Bm9/bDwWZ2uRNe67811q58pLNmY9V6tn8C4DA6B/eeB69eCnf/6dTsMXb9+bSCkSYLgyEzAOH3NEGquIiDomHkW4lkXnogcF6FnEsRz0IUsCjnkofpzCqmu/TwE9sHr0aueMan4QhfiyYb1WiiC6I07bXh2gvYY88b82gRJNv2XZxzOhivebTpwirpnxgz67T0zZvzirrvOn/92woRb4+Lcvnhhq5mVED86IX50QvzKNqastZgpGf1QDeW1bs6p7MLq4vjU0qOwa+HohNnVNs9lnZNWFs9mraFtZcLsahtQNbNHF7e51lbc5n+7UdLquQu26oc4QnKLyr2c35iFnFuA4CJhnZAcZ6lnia36Idb8kTwu9KEvauVakKrhyDNnnYqJ0ENFniKZQ+/TrLU4flZNzUp+6hoTrWdUbUWjc3fB0RdSo3+6+gvGufW2Ina6HPWX98oVTbaaWezdTyha6X4D8sqbz/sRirxRxAeumc2vTVBBI2m/RNovkT/kRzgUXWXFspXr1lTUP1dVCQBMHNT2whfubb460H91oP/qjrmEEGIuit98t4Uu6V70bmpRqyNin1PNRfGPnqjs7r860H914IOi4uqr3RUZUNA80P9hcZLbfs9jTdpRvbbw6LsmihBCSNv+uoK1xUkECMCuhfsX0CE1F+5auLLNT1SR5sjMPPddoKpfI296huQrVP+5ik3MQs4t8Z06txOpvxly41e2Ea6zlOO8JcBsICLHBQg9b+vKhHvfWWQZ6K+Zx7WgtMg7z1yxRTuZYYYandjEIlo59H+awV9L/76g/+pAv2UrvFBQTcVi15jq8GFxEldUc2sGmpdDRmV3lE5Xv8Fw1HdpSsbRv1sJIaR1/4mMjBO9FCGkbX9dxr8pY1O5osErCY7Ga5GZEJJU9FHz8rot1RRpXZl7YuuXNTvcb0AeeeO8H91AItw2CsRfbxwTkd1xgA81t8zcps5mimcqNa7jHgm3TZ5c13Fk9bYqaVqaKwipPBXqchNm1Tg/VLYdqIeja9JuGpNw05iE1DVHodvK+sDJObXtQH3G1jeLQ3++b96CgqPvmm0A0Lp/V+Gj85jiguYdc5kZnq/IqNvfFiiqqJMW16yCmlljEm4ak1vHnsARqhO/MQs+t9yRsE8kZ7n3WepdEnDlTsHv74GiMbnQfPUIExHngt55DhRbVIQXKmKLbA59nmYZFc/NBwCQqhZlRH2faK7qwPOF1CsYrvouVT6esevAQYCDByyL6l5Mfc9kA1vviYxFSik/lSsKCpoHmMZrzXy6ZG7N+6mlqWNyLRV1qzhvpa68+b4foWjg/z/jCmR+zdWB/qv1UHjTGGfdyNj65VXHSXZ14AOP9pn/qSFu/blK2Ge22Wr+UL98wVz/80ZyuyGyVT+ccNMzUE9/hg7h2stjzGLJbQAZKTLgOku5ztsQ1hrU/tafsGSApdfmf0HvPA8vtrCEGypyiXwOhVmthBkVIyNFRjdwLb221v0nHldK5SnwrrnNtA8eV0qBl8olOGHfj1BY/A2qEuL4o19nL8z55Lmmw3Sh7b0qIwAAYc0WuT9wDapW17QRQpKKPjhRkXG0hyJk7oKCoy9sc/TSthUxA4jMEpxT3Qpba6opwnR7+tx356Sk+Y/De1Xb3oMK3Tzn1Pr9rY7oCtYcXb5grq+oIo8dtCtO6u9HM7Yai5IIIZTp3aPgmoEjVP+5ilnMgs+tr0iecY4ztVWtgcfnJ3Gdpd4lrNVH5LgAQMHaj9q/fHxf2k3Fbf4W9MwzR2yR55HMMEO9sUUnh/5PM7frou9r5HD5uib4PvmjFUnAYDjqO0mavwj2Ff6hPlWeRL/e8i4sUiaRGFWuaPCZBIe2ooXdFSe+qIA1hUxG2LO5LeLjfnTjiFT7LEgh/S8OSt3bmkcWj2oBAPj1inINvB+doNikxfJt8WNzAQCg4P0rcwFgXvWXW7P/OX4sXdZ8rdptAc6p7MLlf+7fAQDzF2WsyY2vz9j6hefHPanbJGnx71LjH+ve+gVrpgLYP3bMQnCsba7P7UYVO87nK7bc+6sxLwBARsFy9qcfrlCd+I1ZyLn1HUn/+6vG3Dt2DTjKi6XAeZZ6ldgCrtwplP2VFrf3y1eNiR8Ly//cv4N7QY88c0QbE2GEijxEMof8VKtABBWVj/oOIFU+DmteKFg7z/H63UVvSgH4q1yRVp8bX8+8zKj48iP5tvjHurd+USOVwq6Kfff+qlh+pWYe62Lu/pskc33ej1A0SH66cpVzwvlzZ0/dNj3G0Tgl/eP0HXf+kq+tezi4KmFLiuWDIrr+2nZkp5383dXtPNXP8+fOCiczQfITs1Bzy3MkEeee51gI+0SNfaiCNYJzKKjrmKCC4QsmIYLOnzsrlcau9sX56wDk9ZeFYtUzefDZcbl/ZL1/el+/2837VM2W+oK1PyU54iFgBz76TV343Ha4uGMWbm75j8RdoLPUP888x0g4m+MpVMEadg6Hd+ZEk6AOsaCC4QsmQaT8DaqSf7oRDurc7T/1b/cx7dCzYxbVw9P7+h+JaUg3BMxtKPydpf6JKM8iClWwvHIY/pmDEBIFyQ8/XuGc8O2Fc7aEu2IbjIv06pnbJ9/J19aF7NsL50SXGbHELJY4RQGTOXwjOIeC2jVBBcMXTEIEfXvhnFAGVe2j+OyNww5eX8SYGbHELJY4RQGTOXwjOIeC2jVBBcMXTIJICf934xBCCCGEEAcJRcXgf81DCCGEELohxHRQ9aZfcm9s4Kwtr52376u3512++eab+dq6kF2+LL7MiCVmscQpCpjM4RvBORTUrgkqGL5gEiLo8uXLsdwcDqoihBBCCIkSNuMQQgghhEQJm3EIIYQQQqKEzTiEEEIIIVEaNTVBwncM6IZBGTIlmYYgvxtt1gY/b4T5ijPqIVGGTInW7F1u1voqDhCPjwVDOhAICdfl4+19591eoBiK7pWEx3uAmIwCgKBaclL4VAOv8fPVVbNWwqDvSJQhk/WWfud9sM1aV7FzCddKuG6ZbrNJOO9/CKHQ+Kx9Lo7qG3rVZq3Nrb5yr9+sdZtNTK1Z1g6NvAvTj6dPtlguA1yjPv68pf0kxf6vhb7ta/n4wo9Br+q85fOO08P578CdtxtXml13II8Tz/PWxC7inC9QIedRdhXG5mT1ajxRhkyxVJMbEjOo6r8lt+oJ+HQGdPy/mETkyayVqMBECCGEWFPLtWYAWUmnSQMKvbVWycykUEBTi9tpRhnKjW7rUeit9Dr0FpW/U1LDbIsQ4ly9MPnquREwWUkn6SyR8R1GQNGNUwAHLtYHgrv2OeuaKU0n15ohzKoNQLU0gUJhbPZIqvf6laV6hbHcEYC5Ugf6BhGcjwBmrVyXZgrqCiY+Vy4c//aWrDTm1y5+MTn+pCWEdpuHO9Lu/sW3fRT3/zEZEGXIbM6lzxmNUcWqpY4zmLjqjVkrKU+1ut0sKEOmykLP6TznQijkPMqsQlOaLl9gR14sl/QRzfVs3NQESW8/OP/Yqt+B+96B07GODQAAqF6LQl/KXNNlJZ3cTas0tRp0layLONXSBHq9hmNWWcl6TZfHjQEhFAs+ap8yl6uqAkBwVZtqaQJ1w3qNVzvOe/2yHLXCEYC52ahQ54jmDqRIlQMAgCw5jedIIuz86fPjp08e73x/++S74fzx8HvU4mXT40+eDu+Hu1y3GGWuBiy9vu8TlKHc4vkZgGpp6tKsp8uUpXr6g0XwhQAcR9ncbHTeAZWles8PNQi5f8Uhe4LwnpOTJad1uV3FuSWXrNe4PmWDuVIH6pzkKMfGJ7NWItd1gVEVq472iHD1Q5m1kkyDQes1VMAavlCx+1xc5fTM7FE0j5GyiMbJHVLArbOGJVjTzVpJZmZm4APHMVTDOdVHijINhkCPlIRyINg7wjWElGkwM4M+WrNrLj8b54im3Oi4fXkJXLWpliZQ58iUuez5fK3f2ZCkDOVGx41U+JSletDlGyimF0ccXYjBufbTlfjxY9kl8bK0O+DUyePfus945UKH8+k39mtvY+PHX7kWdn8ezaOR36WTu535VEsTqKHSvY5Yu7s0uY6OBllyGlh6qRAKgzrKXd3W4e3Y8HiO+oZwJeG+Lvm+VDrmbPE3ys1+HENrZj9u4T3PiOX5TVXhteSUtSaNUeXjjsaeL1fjaO/5vUBThnK/n8GNKn+3UMFQ1hKrXgEaExFtl3aXrjuXHj4AZqiAPYBOTK4OF/bohVXdJNea6dE3Y7mBArNWZWENwkUYd0gBty5PVTCXW3OzRaGgP9Wbm40KdUNnoANnVDHDOp7jOr7jcS9vgCbPUUe/uA+ExTGK1Fki8yghJlC5qkeXrhwamGglkmbHqji51z5HXcuHBn9ncYCqTTfsZPR8bn0V3OtXlupBV2loaQJnN78IyEoa9KCTS+S6LvE0PoMy8ONP8ePGupeNnZyeFP/Nl+F+ZWFs/PifroU/rCqRSCSS5lzXOaOsZU5811CntbvLUW+cFYfqtXCsL+hC4DzK8lSFsyPDXKnrCm+vIoQy5DsGeLkeOvJ/See+Lvm+VNKXCdc6HY9DcNwOaMyVs7NE5nueEcmzGXf4Ozu967xEw01Zy9Qf/00r52Mv5kodxwXa8WlK3qS2+mv4uJ6NE/ijcaLnGCqQ5agVAOA+fMAeCDM3G52HTyLXdTFjHcpaU5pOLolq34SvkAJtXZajpsdJzM0WdcP6tKYWCqheS1BjeBqT48xzG23xG49buaxkvc8xSi7cB8JttzxK3IeBmAnKXI1rVR494dy1j65rJk2g/na/VZt1xfdsx/lYv6xkvcao06WJqTVk1kryoYG+K6WWj6T+hSvXfhwXP9arePz0xLvHff83S3hjozeNH3ftp/DacbKSTkIIIbnNHN04bg8FOGuco5RzuDv4Qu6jTH9kpD+QlKfqNT67rWNBlpwGRpXP08//JZ37uhToUsm1Tq7bAbCvnL7nGZHcmnGHv7PzFUdAspJOzt4Jt1nWa7qaWgzcT7wo3DoXkLi4HjAWySGU5agVll7K3GxR58jkqdDUYqaH/vgOLGJCup34q310f7vfj8t+qrbbBVtlBO8mIcf6lbkacI1piQB7hG+EPd3rs+csXpZ2x/gLZzyHVoPC1cMXImWtyV+a5akKznJXe4HqtUBasiyEQl9H2dkZ2JncbWSWjiZXBxnD2u3oBKRDaYD8yI1VhnGpDOZ2ILpbxjC4mnGHLtoJAeefUFCGTLcLsN+bhzJX06XTieiJF8TGGjxz+z6iWzmYtc7HJ1QWvdXVfx/LkAJvXZajhqb8cmNasox+XR5sK87ZzUUZ8nVd7q2NoFLE8VXO0LitzWwwUHRJvscDahGrZO7fH/UdEkfVNjcb2V8uJyYNeH/RIYj1C5w8VeFqUpibjRCDm3kM+eg5o4dWL3zvPeeP337v79G3sB+MY91uWOP/zksOmLUqplCWo3ZWfees9Hi9cwCU7jkOvjDQUTZrVZZYPAggy1ErWB98XDsNlMHAfKHcqlcE8ZReUNelEC+VPm4HIc8zgjDNuEMX/fXDrXoCPtVA/q2QlR3zX4+TlTSkljuf6AZTZ4kMKEOmyghdOu8Bb2WpXhHSx2zXk3COjxauEqGPXNCVTfBhhsD5HKREIskHtcZVzoyp08+s1Codz2o1lMiYp4fMVLMAAAKUSURBVEmiVU+5Qwpm67IcNXQxrTBZjhq6nJemAAdOA82OwYA0k+fQfjApYpeHu9eutTUnl8gAlLXElObo9HJUxIhxpjHUqm1uNroXKnO52nFRPkmiz/HMlCP7I+mJj5vvnHztRx8DoOOnJ949zvFm7OT0JDh59POW9s+PX4kfz70EAABcufbj5FvuCCMW1u1GrktznOTK2lymSqosesdDAbKSTkeNcM0qK2lwVBxXHQm6kPsou75UUJ7q93mgyGEP5HrsdDLr4hTESRjUdcn3pTLgOpnbQVjzjBwSADj4jyHvCUn/OJ3Xzs+v/QJAe97lm2++ma+tC9nly+LLjFhiFkucgdEP+PI6kDByksmfEZxDt127cqHDAukPTPbXMgvBNerjPki7Wxb0oOoIznPwYpEEAVyXYiPGZ9Sog98MwTXg+EMIBcvtZ94lwX7LObylOLEfPmANgkR+QwhF2tjJ6bd/3xHmtxk8nbec/Ob2xODbcCia/F+XUGTEkX8SznNwCImUspaQ2hgtxUlW0pCaKZGoAABAoff4xBvBDSEUeeOn350ToVXdkfY/whlORVHh/7qEIiMOBvkOASE0fLKSTlLCdxAIIcSC16Xoi7OPwt44hBBCCCHx8fz5X4QQQgghJAoSivL5axUTJ06MZSgIIYQQQmIXy2+qSoT1/24hhBBCCKHg4KAqQgghhJAoYTMOIYQQQkiUsBmHEEIIISRK2IxDCCGEEBIlbMYhhBBCCIkSNuMQQgghhEQJm3EIIYQQQqKEzTiEEEIIIVHCZhxCCCGEkChhMw4hhBBCSJSwGYcQQgghJErYjEMIIYQQEiVsxiGEEEIIiRI24xBCCCGERAmbcQghhBBCooTNOIQQQgghUfr/6B3a4Ofk26IAAAAASUVORK5CYII=" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAysAAABOCAIAAACv5B5/AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAfOElEQVR4nO2df3QTV5bnbzFMAmTPptNA9/RmiIMledWKp0/DhsQrpZ2kTQCJzeBhEhnvJFbaEKnBTqQEzBCw2yExacbGiRXbBKmNF3s3B+ykMw5pJBtwEjzHHgI54XTHqB2rZPCeyeQH6d4D05i4sfX2j6qSqqTST0uqkn0/x3+UXr336vvue/XerftKMkUIAUSW1DcelFpCRHZu3ya1BARBEATJYuZLLQCJhjwdHTm7hgiCIAiSFczH1RRJAhw24cjTXUYQBEHkyfztNouEl29scgCAtBr4yEoPI0aeyMpEchAj585CEARBZMj8iYkJqa69aNGiwLGEMgLITY+ckYN95NNffCUIgiAIEg/zpBaAIAiCIAgy55hHJIURIa0GPrLSE7Xj3BbK4uZ9pu06wWcA2q6jIqCz0zMcN1LbhkU+YmZoTwRBEGSukZQHdtL6yEFfahetmdc2c+SsJwTaXjfcVKWP1bvaJi9TlbdJyz/mZXFbWK8sxH+LgXRWCSIfPYlYDkEQBEEABB7YSdt3bCeDx48cHAtZZ07avsPw+JFzL6z8Do9AuaTXrbCTfDWEEDJ28JGQq4wdfOQ7EQjXnu16hLgbbPnVViU/zqWyDTkNoTGuIZsqcJZ/zNVD23U9xYQQQlxmpyERH0zcPEET2Gw2QfOD5hM1U1IGitpfIT0U3l2h+pPro3AlCIIgCBIP8/wcJ09cNJGGOxiMR+D87pV3cKw56PP7/YSAqesPYXSZgBB/EhDeLlLIKd/Bhov7KosEucOuQmDVvo8ZDR/vW8U/Bn7Ok7Y77rjDdlIeenwH13BGjSkpUp/R9jpwOfRA23Um6GCdAG+T1uziPIJBqxIAYsfAlNZBBxNI0xebYXg0/r3JcNsBIZwJukxA9I3M2Fi17+M/9Fpyihq7iJEdRkEz8UZQ7O4JI0p/sf3BSydAiO/gmghW93kvJiUhVAmCIAiCxMl8dvEYO3TAs6HV/fPGxggZmWf9jpLFHSIny/QzXYOE5U+/vueH27+5mxDfIf191ecD6dzFV9Wdc/8cCJyvvnfxnsDZ4PGqOmZRHDukv68ayspWQaKhivToOf38VtL6zTe5wEh77tQ3r65OQBRLg23ICZQTtE3ewfUndFQwpkU5AQDA7CKMYzVkU1G2QLngsbYptE53j1Nr9Crj1sC3z+nnl2zqBICOxZ5Vq86fv3cxAJTpTz33HLxqIEBY/6So8ZxX//opSyUBAKHPQoK5koVfeuyQ/r7R7d9UEl6v+wkQcrfFfe6QfvFz5JtXV3OiefD7DsqOJdU3CIIgCBIfjAc25qiohg0fLSe+Q4b7eR4GQ9mxK41FYYcB+rcvdUEqPbAxRyMccxUR3yFDJbRcuZLLJBpala7gxQkZA1hV95HLksucrYQW3jGz9C63uK5YYMxh6BxNUGF69BQ1uorYqpc/smHVu7SPFOUmbCsHIVV2u9dq1QOAdZBYxbMpeaeYcBkXGuNB23Uq2xCA2UUGY75WxoNvn6LGKx/lGe4f3X6lgjZUbvjIpWxd6qLp34OSsFmZvMstrkYgYzQ/jV9hqjyw5ZbtZUsbDxk28NI5JcstrisAhJCixitXuKeNMYehcvSHP8yraLTkileJIAiCIClm/rVr18aPbK0+DyvXXb92Laf0mK80PNe1a9cA4PpN6Ny0tDP8NJQ+yORIjNtuu405mJqa4pdvqj5/FJZ2wsqa9996+Ddrl778CXeGvXjpYV/dQ3B9cvr8y/cvrQ6UCx6vrLnOq/D65DTcvB5bYab0MAxfPK9cvSQZu9mZsJfNBmB2eTV1vBe7AIAJgalYz4oPPx7GBco4N81toai6Jq+IjyaOUPf4b945D59sejanZnoarl+7fhNuTk4qc7736cVh5d0hbQwzEwDAypqnErdEpP4CWPVUzfSOdy8CTL6+dlNYd8HKmvffeiqH037k8Z/SFb66h8aPPL729QPBE8koQRAEQZA4me/3+8e8eW1tea2X/H7/pSPG1fsuhOTZ1OZ9+UEAICRwyOdMjeo08Ud+bSku+OVf8no3Hzly+amnHgQ/lHV5y8SzL+OdGj9irIKGbt7qyasw8EaQTPQAAJyp2Tyy5/RLSZlNEPai7XWBTUfms64BBAEw2q4zefJhGPLzNVWOCC6W3uEyU3UnaGucLphA+Hi/l6yATRVF3i1HP4GfKgBg0ybvsWMvHwUAUBzlhs2ZGuOlLQ1AVuw5XeFbfXq1d8slYxU0dC9vM17yz2wEhZReVtbVNX7E2JbD9cmZGlWr4nSwQ/x+P8D4EePqfbCnbc/I5sfaT3c/1VV/xKhQwJ7T3cm4YQiCIAiSAPMJIYUvvQQDNa1ACMkxdY2awnOxGzIEjm1RHROppWR1KnchO0ry9l0A2LcPoKTtlLL1kRCfsKRt9OWcjpLQZFit2heSq5CpGwDIDHYhU60HBmrytkDbqOmu5K0W2D1sCnulKzSTtsk7WHVCZ4KqKjBR1FDQYaPtuoY85l182l6X0ItgfOXjH9AKQx7QULhlz4rPoL7LlAMA8NJLL413lLQt73q5kMk/cOozw5a77srp6gIYqFmhyCHkEgAQUvhSV+EMN/3CSg/UrN53oaSNTR+/9Blc+OyDyyZTDnc6b0vXij2nRkdzAMB0CkqqjjzUZTJ1jZrGO0pUqgsr9pzqMqEfhiAIgqSL+WzwwA/Md8EGatXmrpA8Jc6RvYUA8MDekZG9EepJJoIR8l22QPqTR0eeDHwY72zlrs9+Lm33+/3LgpnGO0t3+fJgFPLyFOV7y8LDTn7CfIilMDN6BmrVZnCO7H0g6aCPhaKc2iYvIUoAoO06m4F9A5/F7AJwWyhDMBMwX3JkAmNuC0UZmF1Ia4dGR1EGthSJdwsShP19iSgK7/bto/1+xtIf1pRcLj9algMDbfsugNP/YY26v2ik/HIrbD26jDXCqa68or3+eHtGnEj9BTBQq35D4dy9op+te6BtX56zT/FG24dPsj3HjeXg+a0jrLZAV8avC18ZQxAEQRIl/L8SrdjdN8LDWcKmD9SqawdgoLa0cxzGO0vVanVp5zgAAIx3lnKHKYO5glpdeyZmpl2w/2i5AkBRXg671Gp17UBqpaRQz3hnqfoNRR/PgUsGB+/3JgAAgr9CEfytCX1opiB6ByGEMHEwpXWQK+hI5EV8AYVlZfxg0Zn+rguvrK0dGKjtV+xeAQAAKxQ5A+1ufTnb7PHON0Z3l/NtMN5ZmrpuG6g1g/NoUNNArXl0d3lhTtlWMPOuMlCrrh1gxm7h3pGifm48D9SqUz6cEQRBECSE+WEpF15Zq35FkFJSxK5qI4Uw0A8AkFN2dIR55Wm8s3QX7D+6/0xpaef+o2Up2bapVau7VuzuGxnJYS7wilktCMuVOJlIUjATMAsmI2ugVq02M5G7nM7Sta8we4NmdVcwmieRnqL+Vy4AXAjYd8XuvhmbTGkddET7HEgdnNl14mLcd+FCV97WkZHyztK1/VtHyi+X+pgzZ/ph694cAMZSo7v7jqZvh69w70ghcH0w3llqBudIWQ4AFO519qvVtc6RvYVsciF0vsEvxAznkf1nStW1W2foKCMIgiBIFLhdSPYXNf2ErHih980n7wpk+JcXNf3E7/9JrecB8Pv9d+WCWeihGR2eZX544s03k9uKZOEXrfV4agNJhIDR4XnxJ9zJ//u//6Gd0cPLBIQAs40KAA+wp8Dvhyfe9DwR8ToZ1wMPsEeJ65EbobqZ8cM29cwvNPTPPS8+4Aei6jKru1a80Fv75BPg9/v/5UWNBRyeN3/CVLAsR3XBwgwno8MzE1uIlCUEuszqLqPD82Jgx/eBWo/jRY36Fw7Pi296APx+CCpgWPFC7zL/sieYs9nZNwiCIEg2QHk8HqmunZOT0/LGEQCo3PrU+Lj0+z5y0/Oe64Od27dJrUKE+saDjxoellqFjPqLUSLPzkIQBEHkyXwJH/Qjv0ktDXLTI2fkYB/59Be+iY8gCIIkipQeGB+ZyAggNz1yQ272kZseBEEQBInOfAkf3/kxDDlEEeSmR87IwT7y6S85WANBEATJLjAGJo7c9MgNudlHbnoQBEEQJDrUPx1olVoDEhF5vtxd33hQagkIgiAIkt1QuIGCIAiCIAiSYcJ/Ex9BEARBEARJL+iBIQiCIAiCZBr0wBAEQRAEQTINemAIgiAIgiCZRvCfuX0+3613KqSSMvm5T6GQ7OpyxufLPstki+Zs0ZkVoDFlyCzuFFk1TVZiMkA2tleGmjEGhiAIgiAIkmnQA0MQBEEQBMk06IEhCIIgCIJkGvTAEARBEARBMk0ED8xnL16oO+wLS++zLHvYfjm9kuLHbaEsbqlFyAzarhM1CtpKCmi7jtLZaUhRv0SqRIZkkdS5Qwo7JUvnE9quoygqK6UjsxKMgSEIgiCzH9pusuW7CCEOvdRSZhWsX8uB/m0CRPDAFNaeG4Ob5fW1zZkT5REwWx7Zs0Unn2zUnCKU1kEyaFVKLQNBEACvZ0irUUmtYnZidhGOSP7tHF4IIjP/28mb/M+jE1GzTwJMw6UJ+HMapOQAhIiJxdQ0+P88efPbePPfvOmH6Zs3v51M6JQs4CwTU2ekDInaKgXErVliEhx1yZGSfpG7JSF7On1OkYZOkWA+ESWhm/fP0+Cfupm++z0jM4mMSHBc4ZwgQoQY2CX7s4st59gP7lcXU0XMX4kzM7J8LQ8uXHDLwgW3LFywrY9N661kU255uIUOKyF6lp/YXLlAU3UWDm+4ZeFDzb7QsoFT2yof4tXQt23hQ80+oFseuqWyL1hbZV/066aJ3tAm+JofFpEkUCVMl1aznG0LEJ8S3oAUGaWhKb7mh3n5U9kvTNdX9IoVpFtE7Cx6T2WExKUiaSeVnRI+bnsrFzzY0rJNmpuXVRuqqq/iluLDcHaHJv3jP5qYwNX7Kvjm4iYEye/WFOFreZDf0oUV24SLV5iJIq5ls5x5hIdYBveriw3QRfr/QPr/QH5pSq8aVgf9+pYd9/TcmJy4MTlxo3UNIYS4Kxa88l+HmRTPxrc1Fb2c4ohn3RUL/vZig2fixuTEjcn3Kyqbb3jqC6C8Z3Lig8pcfrPJWt6p1uZdW86+7aIJIYT0HW8r31WZS4AAHN5w/FFGUs+Wwxu29UVRlWo4y6wVNoFufpX8KlRSJKnRbZUZzXK2LYlsOsFAmuiB4gXb+ojYKBUZt4Qb1inpFyBM3t5tC+95a+Pw5ETLWrGCiopwO4tpS7cxk5SaHm1zlnR1SvRxC/9a9ftHJ25MTgwfgB3lzXQmmsbeXx9U5oqpWtMy2bMZCho8aRr/UcWITCAKdcHZ33sJIaT3+MWCgoujNCGk73hbwd/rM3O3zpCw9nIuZoWbEJJb8WHP5rb9zTTp3VZ88cCnLa3CxSvERKJrWVo0y43QGBir1M/Z91TPiVWvGYvY5FV6c9Ds6bOOQqWBtuKFD7YEnrz63muHszvzb1208NZFCzU7z4LHy3sqEz3b9157wYFfVSb+LtvaR8vPvu32AUDv8cNb/nYtm1ze07qGzfB8fUHb8b5YqtKOorLlGWh5cNHCWxcVt/FPiEgNIK1m2dtWXAl/IAXSw0dpeErMygPE3973KhYVQ8+NM6wi0YLhdo6lLS0kJxVJK6ntlIjjtqD+uXUAAArDxoK0t4kheH9JPDOHiRGbQBT6xwoOv3cS4OR7wxvbXtD82uUD3+jFgo16hTR368wo75lkXcyWdUzKmpZ3NVWaRcXD9W3PiC7DQRNFXstmPfL8LuS6lhuTEzfaYcutiwKjsODApze4Pr4x+X6IaxX9bIJXf64B3nH7fC2/bN/86JroeVN53QTxNf904a1PQzvzoJnALCeh5myxbQwK1EoQG6Vi4zaBWuNqb/vF4QIYHvVFLxhu55lpS4pkpSJpJPWdIs/7VJ6qWArUSsY3HR719R6/+JheoVLD2+4+1zvwmF4BktytUpL0Wpb9hO5CEsL9McdFG9aff677NJPo+3WjEwCA8LKl7g+Cu5DNLX2EkNyK9y/WF5wdoQlZ82j52R2vcaHJvgp2x40tIXpWkNjb0kxzYbYoETj2OHfdY/Drxtd+DfW2tYGz7cd7OXXlO89ufnRNJFWphy86qJP+/dmCA86KXEII7Xr7LAQziEiNbquMaZa9bSMpeTqwj9LXuBMeW5crNkrDU3jVp6RfAKB814f9nz72Tv6tlX3RCobaWURb6gkxZpJSkZSSnk6JPm4FE23kSXemRJpkIt9N6dvCiSFGZAIhues2wjtbftmuUeUyx/vfho36XJKhu3WGRGwvR1/FBk/9xd/Vw84tbOP52QRFIqxl6dAsN+bHyqC3HTM/smneCQCA/761zgzvpl+UolL12oLbigEAoPzd62sAYG3zpweK/mbBbUxaz7fNggKiZ/mJm/95ohUA1m0s2Fm8oL3gwO9Cn4kUglOKyn/ULPg7z4Hf8TKVw/HbFm0ArrY1Ea+bVvg6n6/ff8+PFu0AgILyzfznBjGpAaTVLGfbRlYy8e4zi+65bSdw6ZUKEB2lYSm+mJUHSKS9isr+CdUzixbcBpv/eaJVvGCInUXUZoQkpCLpJpWdIs19GgtZqYowgQAo9I/Bzh3lu9Zyx29v/JUCQLq7dQa0Fy9oZw8L6j/9UPXagr/zHPhdi0IBh+vfuedHlarrLWt5C4HwByvWRFzLZj3Un67fCHz48ovPx767XCopuX+89Fc/uFOqq4dw8pmF+9XD71cwd4qvtSj/s3+88bpEd8KXX3wuH8vESRTNcrWtxEpSjtDOmSDpgZp5qXOHWdwpspoYZSUmA2Rje7/84nOFQl7jeX5oaE7SH3jJVJzw5LP/qfh/8T7/7J0Jwbo71rK/vXzXn3IDwVLwg7RRTHlGUKMjrlm+tpVeiZBYozQ6oXbOEMlcTiKpc4cZd8rMhmI6kdWYkZWYDDDX2psOQnchyV/MBZuuef1PE69HOHfq2UUb2+Fn70w8klFJcwK0bSJEG6XRySI7Z5HUuUNYpyQ/FBEEiQJ17T+uBz58/dUXvoV3SyVFcePy977/A6muLme+/uqLrLNMtmjOFp1ZARpThsziTpFV02QlJgNkY3u//uoLue9C+udJGQPDqGYkstEy2aI5W3RmBWhMGTKLO0VWTZOVmAww19qbDuT5e2AIgiAIgiCzGYqmM/BPuxAEQRAEQaREdruQt94ZFDT5ua+kXzJ9/SVXb7/9dqmuLmeuXs0+y2SL5mzRmRWgMWXILO4UWTVNVmIyQDa29+rVq1JLCAV3IREEQRAEQTINemAIgiAIgiCZBj0wBEHSwp13/fijc59IrQJBEESmoAeGIEi6qK7Zj04YgiCIKOiBIQgAANB2HaWzh38z2G0RTU7thS3u8HS3JVJyDD0RCkZqYDqg7TpKNzENHUeaBU4YGhNB5jLpvXHSPr+knKgemAI+NsOr0nw50m2hWJj5j7breB+ZT+G2dluCyYESwUrEJmhBNkp0tkUQJCn+yw++H+qEIRLCm+1wpksjQTuHLVK0XSdIDax0wg5xW0T6KDxRtEMz3cthfg9t12WZIyQZET2wZx6Hj1fCwP/LpJgAbgtlABchhBDi1dRZ3ABK66DLDNomr0PPZtJqofuEoJdpe51TUI+2ycvU0TRsiDYizOy1CCGB6uVJpEd8ZMYorYNk0KpMU+0y6Lj0NlDkWov+AiAtTtgcM2bKcFtUtnxXXFPinGcmY4xnZ1e+zcQ3M203dYOWf5WeYiaj2Wlgr0fbdRRVB2Ytv07RRLfFBB0k0KFMedFE2ZCVN04amTc6AYE/Ps1vwb1vwSVJRNGjw9qmKtYVUloHxb2ifKMRbA284UWf6IamJrNIVqW12jwU4q4hCJIZgk7YqDSPdAiHVqMCAABlXr7ESmYv7h5nYP3SVzXxAgW03dRt7KgOmj64uumLzTA8SrOJhAxWaQSViibqHQFnRrneqGXKiyYiMmVe0WJKag1hKPPyhwS+lTh51mqzsy7wgOFusIFxfV6atUmJ20KpbEPgNIhtwMoX5mmSt0EsEiR3Wyid3W4JC9wHQvQ6u50f6g5uUqfMEoKH3mD9lMEZPM9lcFtE4vu8WDzvvNtC6XS62B0Xuu0e6WxAjzA9xD7RGxjT2oKGhOlyWyid3c12osUdzBVyrUnexRknTLvjffjTv6Mx4zFm1KpE1fDfwQgW4WXTVzWBzWSngbbrDMNNHbMrFJGIwcP6SzgnpXamHfJ42WuYuo2RjO7ucWqN62fQIV7PUH5eaHnRxIwSOtkncOOI34aRZwYu54nwfV22zrS2NDnmAYD8nDC9w2V2GiLMn/x8xWbOVaPtdU5zdYTRTdvrog5vpyHahC0b9A7ibdKC2UWyLo7rNPQUE0Y2bW/gguS8yDvAkM1TzETOgQ3c8zejO6A7sFi6LVSdxsvG2Y3dqlR3Gv+6xMUFVZXWQRfj8bsthmHedjiHSqNl51p3z7CWffZ09zi1xo7BWB3H2ifUJtH0RLZPPIhbe5jdtmdkClKICwwUr7PqoINVS1E9XFVR+avvL7089tt5nw/89twnaMzYxmRntnhHO+8WExTh51FaO5rApqJUtqGIk2V2kqDBQ/qLtpu4bUNCHPoZzrQqjTYQQXA32IaYVNpusuWHG53zUHqKZzSpuy2G4cC+UdTEjBJq2BDin/ODRJ4ZmAU+WKeWjc8Eb4e0tjU55gHA6W/8TIulFsND72B3saN7Rfoq1szuBhuEj7Uhm4qiKIpSdRu90YZ38D0wmb8GlrWYXQHLKq0OKzDTjiACwQXuleuNzLsO/GA+KK3V3Grp7nEGepZS2YYgxXF2wXVBXxxcpfUOV75NRUUIHyjXG7XOHjeAu2fY2FGd332CBnp0OK4n26B99FVNTC0x9USyT1yIW1vQrJAUgTDuhL7YHKwqWvzZ7/f7/f7vfW/J6Lmjr9Xs/+jcJ2jM6MbMZ8Z13KM92GphEX7jLRT3ipBXU5dVgfQYJGrwkP5S5uWD05AqgzCPF8xTfZ2myazVqFhXRGR5UVoHCSGEFPckH29j3JaQFU40MdPEMGzccz6/yhgzg1id3O2Q2salhHmnv/FLrSEiSuug6GOsIEu1eaj7hF08hKsVPBQhcoC26yhuHfA2aWMXECPQsbLqXfatC3fPsHG9UqWB7hPuE90wo60FmcG9RZQgjPs1PT09PT29dMl3f9X0cnXN/o/OjUUrg8YMZkx8tPOKBBP5G11z8dXYKAbXO5igiynyTm9CMPURQgbzPM78PCV9onsosNViYDwC4aqmd7iS6xA2aiR07kQT00YwLMXi9bCBv5QbFpKaGbjbIRWXTzHzCIHAn1yg7TrB6Iw6VemLzUM2W+QdSEReeD1D3LMpfaJ7KEpO3h6z4HuugnRwW1K9CRnpumxU3xsMmYeiXG+EblOdMz9PyRzXxeszBB7PabvJNmQu5s+ccdkh7HvAiSKozW2300xKsKHMe5aJ32R892tqamp6enrJku82/FP11sdr//X5d9GYiVQV32gXFgmi0miDa7y7xwkSvyKUQmZocNpudwOA0jrobQpxJmYGtw/IRbq4vW9tk5c49PyVLtabMhF066g6jVfoaYkmphXleqOWFydxWwxcUxI1bFy3YYIzQ6TbQR5E/TUKM5jugMKijP8qmNLaoanj3sxiI6m0Xcc8OoTNQPqqJi0Ip9noBN/64pzyYIrcI/PMWJe9zCjoq5qA3SExefKjxsD0DnYfmqIoExjNYulUT3HKZ5rAa4iC6zLvlXRYlezLNGJLoXK9EYbYNV+53ghDgZkhRseZoYfbZ8oPe3QV1xPZPsm2OlhbT55VCaB3EFc+t5uV3JZGuPs1NTU1NTW1ePEdh97q/c/D/weNmUhVcY52QZFgMvcWGKdgNr1zMTODK615vCHjYEdc0jNt8O3zOk3U1194K53Kls8pZIpzXwUQ/ASmMNHdYBsK7jezWkUT0wx/35WiDMNNXKtFDBuduG7DyDNDjDqTalx6oU7+cTrwIfePl0r6pfkBVgDoL7l6++23S3V1OXP1avZZJvWamfcpU73jmI22FSc99kmIEGPeedePx8c+Ztyvf/u3f1+6dPHU1NT/fKKCX+RUX3fGZcaBDIyZKmbPCA9DVk2TlZgMkIn2pvo2lGEfzYNvIfiHIDKCvxvNi2zLBf533QOPqmkqJUp0+6TwQskTcL/uvX+dy90/NTVFUdSzz2w51dfN/M1M7dwypizFIEgKkfmcn3qovq+mAh8U/3EZY2AyRIaee0xSo5m261Tst7m1TWkJSWSjbYOk3z4JER4D844MMe7Xqb5us2XHb453fPHFV09bdv72wvsS6hRHZsZMFdk9wqMiq6bJSkwGSFd703kbyrCP5sNU7EwIIg1K6yCxSi1CxsjePgH36/77Vubk/PUnn3x6zz15OTl//d5vTj76P9ZIrU6I7I2JILOfOXYbzvPPI4E/qcUgCDJ70PwwL+B+AcCe3bbdNfunp6e3P/f0L2rrpVaHIAgiMfOlFoAgyOwk5C37++9bqci9+8svv168+I6//EuceRAEmetQNC34ruqSJUukkoIgyOzmyy+/Lv77n937335sfvoffvQ3mtgFEARBUofc3gOj5PlDsQiCIAiCILOYiL/IiiAIgiAIgqQJ9MAQBEEQBEEyDXpgCIIgCIIgmeb/A0Xx6FgsbAyCAAAAAElFTkSuQmCC" alt="" />
7、查看表索引信息
show INDEX FROM table_name;
8、 清空 二进制log
reset MASTER;
9、字段类型不匹配导致 不走索引
表结构如下
- CREATE TABLE `tb_apps` (
- `id` int(11) NOT NULL AUTO_INCREMENT,
- `app_id` varchar(128) DEFAULT '',
- `app_name` varchar(255) DEFAULT NULL,
- `created_at` datetime DEFAULT NULL COMMENT '创建时间',
- `updated_at` datetime DEFAULT NULL,
- PRIMARY KEY (`id`),
- KEY `idx_app_update_time` (`updated_at`),
- KEY `idx_app_aid_country_ctime` (`app_id`) USING BTREE
- ) ENGINE=InnoDB AUTO_INCREMENT=0 DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;
查询语句:
- select app_id, app_name from tb_apps t where t.app_id=895670960;
解释执行后发现未走索引
sql改成
- EXPLAIN select app_id, app_name from tb_apps t where t.app_id='';
这次走索引了
参考资料:
1、MySQL数据表碎片整理 http://www.365mini.com/page/mysql-optimize-table.htm
2、MySQL定期分析检查与优化表 http://www.cnblogs.com/littlehb/archive/2013/05/08/3067175.html
3、 mysql优化Analyze Table http://blog.csdn.net/alongken2005/article/details/6394016
4、MYSQL explain详解 http://blog.csdn.net/zhuxineli/article/details/14455029
6、mysql 性能优化方向 http://www.cnblogs.com/AloneSword/p/3207697.html
7、MySQL缓存的查询和清除命令使用详解 http://www.jb51.net/article/75955.htm
8、MySQL的优化点总结---通过计算多种状态的百分比看MySQL的性能情况 http://www.tuicool.com/articles/zAnaIvM
9、 mysql的缓存机制 http://blog.itpub.net/15480802/viewspace-755582/
mysql 优化的更多相关文章
- MySQL优化聊两句
原文地址:http://www.cnblogs.com/verrion/p/mysql_optimised.html MySQL优化聊两句 MySQL不多介绍,今天聊两句该如何优化以及从哪些方面入手, ...
- 0104探究MySQL优化器对索引和JOIN顺序的选择
转自http://www.jb51.net/article/67007.htm,感谢博主 本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分" ...
- mysql优化笔记之分页
过年闲得蛋疼,于是看看mysql优化,看了网上好多关于分页的优化方法,但是呢,我亲自试上一把的时候,没有出现他们说的现象...难道是我的机器问题么? 下面看看我的实践记录,希望看到的加入进来交流一下O ...
- MySQL优化概述
一. MySQL优化要点 MySQL优化是一门复杂的综合性技术,主要包括: 1 表的设计合理化(符合 3NF,必要时允许数据冗余) 2.1 SQL语句优化(以查询为主) 2.2 适当添加索引(主键索引 ...
- MySQL优化实例
这周就要从泰笛离职了,在公司内部的wiki上,根据公司实际的项目,写了一些mysql的优化方法,供小组里的小伙伴参考下,没想到大家的热情很高,还专门搞了个ppt讲解了一下. 举了三个大家很容易犯错的地 ...
- Mysql优化系列(2)--通用化操作梳理
前面有两篇文章详细介绍了mysql优化举措:Mysql优化系列(0)--总结性梳理Mysql优化系列(1)--Innodb引擎下mysql自身配置优化 下面分类罗列下Mysql性能优化的一些技巧,熟练 ...
- mysql优化记录
老板反应项目的反应越来越慢,叫优化一下,顺便学习总结一下mysql优化. 不同引擎的优化,myisam读的效果好,写的效率差,使用场景 非事务型应用只读类应用空间类应用 Innodb的特性,innod ...
- mysql 优化实例之索引创建
mysql 优化实例之索引创建 优化前: pt-query-degist分析结果: # Query 23: 0.00 QPS, 0.00x concurrency, ID 0x78761E301CC7 ...
- MySQL优化的奇技淫巧之STRAIGHT_JOIN
原文地址:http://huoding.com/2013/06/04/261 问题 通过「SHOW FULL PROCESSLIST」语句很容易就能查到问题SQL,如下: SELECT post.* ...
随机推荐
- 使用DFA做文本编辑器的自动提示
之前看龙书的时候,龙书提到可以在编译器里用动态的生成的NFA自动机来动态匹配自己的输入串,NFA的简单实现其实写起来非常简单,但是我是实际凭感觉写完之后,却觉得并不是非常的好用,在处理自己已经输入过的 ...
- 好用的dos命令
控制台使用"help"查看帮助,使用"help + command-name"或"command-name /?"查看命令帮助. dir 可 ...
- java jdbc的优化之BeanUtils组件
1. BeanUtils组件 1.1 简介 程序中对javabean的操作很频繁, 所以apache提供了一套开源的api,方便对javabean的操作!即BeanUtils组件. BeanUtils ...
- [LeetCode] Remove K Digits 去掉K位数字
Given a non-negative integer num represented as a string, remove k digits from the number so that th ...
- [LeetCode] Remove Duplicates from Sorted Array 有序数组中去除重复项
Given a sorted array, remove the duplicates in place such that each element appear only once and ret ...
- CentOS下配置java环境变量classpath
一. 需要配置的环境变量1. PATH环境变量.作用是指定命令搜索路径,在shell下面执行命令时,它会到PATH变量所指定的路径中查找看是否能找到相应的命令程序.我们需要把 jdk安装目录下的bin ...
- 关于mirai病毒的一些研究
首页好像只能显示随笔,之前发在文章里面的,见文章http://www.cnblogs.com/mrchang/articles/6210681.html
- 如何从Exchange邮箱数据库批量删除特定邮件
- neo4j-java连接
本例使用neo4j3.0.1架包 使用maven下载架包 <!-- https://mvnrepository.com/artifact/org.neo4j/neo4j-jdbc-driver ...
- Markdown
1. 斜体和粗体 代码: *斜体*或_斜体_ **粗体** ***加粗斜体*** ~~删除线~~ 显示效果: 这是一段斜体 这是一段粗体 这是一段加粗斜体 这是一段删除线 2. 分级标题 第一种写法: ...