先读几篇文章:

Interpretation of Association Signals and Identification of Causal Variants from Genome-wide Association Studies

GWAS have been successful in identifying disease susceptibility loci, but it remains a challenge to pinpoint the causal variants in subsequent fine-mapping studies. A conventional fine-mapping effort starts by sequencing dozens of randomly selected samples at susceptibility loci to discover candidate variants, which are then placed on custom arrays or used in imputation algorithms to find the causal variants. We propose that one or several rare or low-frequency causal variants can hitchhike the same common tag SNP, so causal variants may not be easily unveiled by conventional efforts. Here, we first demonstrate that the true effect size and proportion of variance explained by a collection of rare causal variants can be underestimated by a common tag SNP, thereby accounting for some of the “missing heritability” in GWAS. We then describe a case-selection approach based on phasing long-range haplotypes and sequencing cases predicted to harbor causal variants. We compare this approach with conventional strategies on a simulated data set, and we demonstrate its advantages when multiple causal variants are present. We also evaluate this approach in a GWAS on hearing loss, where the most common causal variant has a minor allele frequency (MAF) of 1.3% in the general population and 8.2% in 329 cases. With our case-selection approach, it is present in 88% of the 32 selected cases (MAF = 66%), so sequencing a subset of these cases can readily reveal the causal allele. Our results suggest that thinking beyond common variants is essential in interpreting GWAS signals and identifying causal variants.

Where is the causal variant? On the advantage of the family design over the case-control design in genetic association studies.

Identification of causal genes for complex traits

Pure and Confounded Effects of Causal SNPs on Longevity: Insights for Proper Interpretation of Research Findings in GWAS of Populations with Different Genetic Structures

初步学习一些TensorFlow的基本概念

YouTube的莫凡教程  GitHub

# View more python tutorial on my Youtube and Youku channel!!!

# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial """
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf
import numpy as np # create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3 ### create tensorflow structure start ###
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
### create tensorflow structure end ### sess = tf.Session()
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init) for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))

  

如何制作模拟的数据

Data Simulation Software for Whole-Genome Association and Other Studies in Human Genetics

A comparison of tools for the simulation of genomic next-generation sequencing data

num_cau_SNP <- 20
num_SNP <- 500
samplesize <- 20
h_squared <- 0.5 # generate genotype in Binomial distribution
pj <- runif(num_SNP, 0.01, 0.5)
xij_star <- matrix(0, samplesize, num_SNP)
#for every SNP
for (j in 1: num_SNP)
{
xij_star[,j] <- rbinom(samplesize, 2, pj[j])
} #position of causal SNPs
CauSNP <- sample(1:num_SNP, num_cau_SNP, replace = F)
Ord_CauSNP <- sort(CauSNP, decreasing = F) # generate beta, which is the best predictor
beta <- rep(0,num_SNP)
dim(beta) <- c(num_SNP,1)
# non-null betas follow standard normal distribution
beta[Ord_CauSNP] <- rnorm(num_cau_SNP,0,1) # epsilon
var_e <- sum((xij_star %*% beta)^2)
# var_e <- t(beta)%*%t(xij_star)%*%xij_star%*%beta/samplesize*(1-h_squared)/h_squared
e <- rnorm(samplesize, 0,sqrt(var_e))
dim(e) <- c(samplesize, 1) # generate phenotype
pheno <- xij_star %*% beta + e # scale(genotype matrix)

  

待续~

causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation的更多相关文章

  1. Reading | 《TensorFlow:实战Google深度学习框架》

    目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...

  2. 【书评】【不推荐】《TensorFlow:实战Google深度学习框架》(第2版)

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 这本书我老老实实从头到尾看了一遍(实际上是看到第9章,刚看完,后面的实在看不下去了,但还是会坚持看的),所有的代码 ...

  3. FaceRank,最有趣的 TensorFlow 入门实战项目

    FaceRank,最有趣的 TensorFlow 入门实战项目 TensorFlow 从观望到入门! https://github.com/fendouai/FaceRank 最有趣? 机器学习是不是 ...

  4. 学习TF:《TensorFlow机器学习实战指南》中文PDF+英文PDF+代码

    从实战角度系统讲解TensorFlow基本概念及各种应用实践.真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带你由浅入深系统掌握TensorFlow机器学习算法及其实现. <Tensor ...

  5. TensorFlow神经网络集成方案

    TensorFlow神经网络集成方案 创造张力流create_tensorflow_neuropod 将TensorFlow模型打包为neuropod包. create_tensorflow_neur ...

  6. TensorFlow(实战深度学习框架)----深层神经网络(第四章)

    深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最 ...

  7. 【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐

    原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网 ...

  8. 学习笔记TF055:TensorFlow神经网络简单实现一元二次函数

    TensorFlow运行方式.加载数据.定义超参数,构建网络,训练模型,评估模型.预测. 构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层.隐藏层.输出层.Tensor ...

  9. TensorFlow机器学习实战指南之第二章

    一.计算图中的操作 在这个例子中,我们将结合前面所学的知识,传入一个列表到计算图中的操作,并打印返回值: 声明张量和占位符.这里,创建一个numpy数组,传入计算图操作: import tensorf ...

随机推荐

  1. Windows Media Player添加播放插件

  2. BSGS算法学习笔记

    从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...

  3. Codeforces Round #439 (Div. 2) Problem C (Codeforces 869C) - 组合数学

    — This is not playing but duty as allies of justice, Nii-chan! — Not allies but justice itself, Onii ...

  4. Win10 快捷命令收集

    桌面相关 Win+D:显示桌面 Win+Tab:虚拟桌面切换器 Win+Ctrl+D 新建桌面 Win+Ctrl+左/右 :移动虚拟桌面 Win+m :最小化窗口 Win键 + Ctrl + F4 关 ...

  5. Chrome浏览器F12开发者工具的几个小技巧总结

    1.直接修改页面元素 选择页面上元素,右键“检查”,会打开开发者工具窗口,显示当前选择元素的源代码,可以双击进行修改.如果要修改的东西比较多,可以折叠元素并单击选择,再右键Edit as HTML修改 ...

  6. 使用python+ffmpeg+youtube-dl下载youtube上的视频

    一.准备工作 1.安装python,详见https://www.cnblogs.com/cnwuchao/p/10562416.html 2.安装ffmpeg,详见https://www.cnblog ...

  7. HDU 2612 Find a way(找条路)

    HDU 2612 Find a way(找条路) 00 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)   Problem  ...

  8. python学习 day15打卡 初识面向对象

    本节主要内容: 1.面向对象和面向过程 2.面向对象如何编写 3.面向对象和面向过程的对比 4.面向对象的三大特征 一.面向对象和面向过程(重点理解) 1.面向过程:一切以事物的流程为核心.核心是&q ...

  9. Http_code码

    _codes = { : (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: (: ...

  10. Android RealativeLayout 布局gravity不能居中的解决办法

    对于LinerLayout中的gravity发现复制到realativeLayout布局中发现不起作用,后来发现只要在他的每个子组件中使用  android:layout_centerVertical ...