先读几篇文章:

Interpretation of Association Signals and Identification of Causal Variants from Genome-wide Association Studies

GWAS have been successful in identifying disease susceptibility loci, but it remains a challenge to pinpoint the causal variants in subsequent fine-mapping studies. A conventional fine-mapping effort starts by sequencing dozens of randomly selected samples at susceptibility loci to discover candidate variants, which are then placed on custom arrays or used in imputation algorithms to find the causal variants. We propose that one or several rare or low-frequency causal variants can hitchhike the same common tag SNP, so causal variants may not be easily unveiled by conventional efforts. Here, we first demonstrate that the true effect size and proportion of variance explained by a collection of rare causal variants can be underestimated by a common tag SNP, thereby accounting for some of the “missing heritability” in GWAS. We then describe a case-selection approach based on phasing long-range haplotypes and sequencing cases predicted to harbor causal variants. We compare this approach with conventional strategies on a simulated data set, and we demonstrate its advantages when multiple causal variants are present. We also evaluate this approach in a GWAS on hearing loss, where the most common causal variant has a minor allele frequency (MAF) of 1.3% in the general population and 8.2% in 329 cases. With our case-selection approach, it is present in 88% of the 32 selected cases (MAF = 66%), so sequencing a subset of these cases can readily reveal the causal allele. Our results suggest that thinking beyond common variants is essential in interpreting GWAS signals and identifying causal variants.

Where is the causal variant? On the advantage of the family design over the case-control design in genetic association studies.

Identification of causal genes for complex traits

Pure and Confounded Effects of Causal SNPs on Longevity: Insights for Proper Interpretation of Research Findings in GWAS of Populations with Different Genetic Structures

初步学习一些TensorFlow的基本概念

YouTube的莫凡教程  GitHub

# View more python tutorial on my Youtube and Youku channel!!!

# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial """
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf
import numpy as np # create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3 ### create tensorflow structure start ###
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
### create tensorflow structure end ### sess = tf.Session()
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init) for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))

  

如何制作模拟的数据

Data Simulation Software for Whole-Genome Association and Other Studies in Human Genetics

A comparison of tools for the simulation of genomic next-generation sequencing data

num_cau_SNP <- 20
num_SNP <- 500
samplesize <- 20
h_squared <- 0.5 # generate genotype in Binomial distribution
pj <- runif(num_SNP, 0.01, 0.5)
xij_star <- matrix(0, samplesize, num_SNP)
#for every SNP
for (j in 1: num_SNP)
{
xij_star[,j] <- rbinom(samplesize, 2, pj[j])
} #position of causal SNPs
CauSNP <- sample(1:num_SNP, num_cau_SNP, replace = F)
Ord_CauSNP <- sort(CauSNP, decreasing = F) # generate beta, which is the best predictor
beta <- rep(0,num_SNP)
dim(beta) <- c(num_SNP,1)
# non-null betas follow standard normal distribution
beta[Ord_CauSNP] <- rnorm(num_cau_SNP,0,1) # epsilon
var_e <- sum((xij_star %*% beta)^2)
# var_e <- t(beta)%*%t(xij_star)%*%xij_star%*%beta/samplesize*(1-h_squared)/h_squared
e <- rnorm(samplesize, 0,sqrt(var_e))
dim(e) <- c(samplesize, 1) # generate phenotype
pheno <- xij_star %*% beta + e # scale(genotype matrix)

  

待续~

causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation的更多相关文章

  1. Reading | 《TensorFlow:实战Google深度学习框架》

    目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...

  2. 【书评】【不推荐】《TensorFlow:实战Google深度学习框架》(第2版)

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 这本书我老老实实从头到尾看了一遍(实际上是看到第9章,刚看完,后面的实在看不下去了,但还是会坚持看的),所有的代码 ...

  3. FaceRank,最有趣的 TensorFlow 入门实战项目

    FaceRank,最有趣的 TensorFlow 入门实战项目 TensorFlow 从观望到入门! https://github.com/fendouai/FaceRank 最有趣? 机器学习是不是 ...

  4. 学习TF:《TensorFlow机器学习实战指南》中文PDF+英文PDF+代码

    从实战角度系统讲解TensorFlow基本概念及各种应用实践.真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带你由浅入深系统掌握TensorFlow机器学习算法及其实现. <Tensor ...

  5. TensorFlow神经网络集成方案

    TensorFlow神经网络集成方案 创造张力流create_tensorflow_neuropod 将TensorFlow模型打包为neuropod包. create_tensorflow_neur ...

  6. TensorFlow(实战深度学习框架)----深层神经网络(第四章)

    深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最 ...

  7. 【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐

    原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网 ...

  8. 学习笔记TF055:TensorFlow神经网络简单实现一元二次函数

    TensorFlow运行方式.加载数据.定义超参数,构建网络,训练模型,评估模型.预测. 构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层.隐藏层.输出层.Tensor ...

  9. TensorFlow机器学习实战指南之第二章

    一.计算图中的操作 在这个例子中,我们将结合前面所学的知识,传入一个列表到计算图中的操作,并打印返回值: 声明张量和占位符.这里,创建一个numpy数组,传入计算图操作: import tensorf ...

随机推荐

  1. cat查看文件以及sed查看指定行数

    https://unix.stackexchange.com/questions/288521/with-the-linux-cat-command-how-do-i-show-only-certai ...

  2. WebLogic调用WebService提示Failed to localize、Failed to create WsdlDefinitionFeature

    在本地Tomcat环境下调用WebService正常,但是部署到WebLogic环境中,则提示警告:[Failed to localize] MEX0008.PARSING_MDATA_FAILURE ...

  3. Visual Question Answering with Memory-Augmented Networks

    Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...

  4. (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning

    Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...

  5. --HTML标签2

    表单元素: <input>标签 搜集用户信息 属性:type=" " text 默认值 size 长度 value 规定值 readonly 规定值 placehold ...

  6. algorithm.sty not found error in LaTeX 解决方法

    参考: algorithm.sty not found error in LaTeX algorithm.sty not found error in LaTeX 解决方法 错误日志: LaTeX E ...

  7. 如何判断一个单向链表是否为回文链表(Palindrome Linked List)

    题目:给定一个单向链表,判断它是不是回文链表(即从前往后读和从后往前读是一样的).原题见下图,还要求了O(n)的时间复杂度O(1)的空间复杂度. 我的思考: 1,一看到这个题目,大脑马上想到的解决方案 ...

  8. js数组常用方法,含es5

    (1)基本的数组方法 1.join() Array.join()方法将数组中所有元素都转化为字符串并连接在一起,返回最后生成的字符串.可以自己指定分隔的符号,如果不指定,默认使用逗号 var arr ...

  9. BOM - 浏览器API

     1,javascript   组成部分: 1.ECMAscript(核心标准):    定义了基本的语法,比如:if for 数组 字符串 ... 2.BOM  : 浏览器对象模型(Browser ...

  10. Js操作Cookie的实现