题意

链接:https://cn.vjudge.net/problem/HDU-4729

给你n个点,然你求两个点s和t之间的最大流.而且你有一定的钱k,可以进行两种操作

1.在任意连个点之间建立一个单位1的流,费用a

2.将原先的流扩大1个单位,费用b

思路

题目已经说了是一棵树,那么树上两点的最大流就是两点路径上的最小值。其实两种操作各一次对最大流的贡献是相等的。我们分类讨论:

  1. 如果a<=b,直接算第一种方案即可,直接给s、t连一条边,对答案的贡献是k/a。
  2. 如果a>b,分两种情况。如果k>a,我们可以先操作一次方案一,即先给s、t连一条边,再对这条边进行扩大,这种方法对答案的贡献是(k-a)/b+1;如果k<=a,那么我们只扩大,肯定是先把最小的边扩大了,再看扩大新的最小边……直接暴力肯定不行,我们二分最大流x,我们可以扩大k/b次,那么判断一下在k/b次内能不能使得s到t的最小值>=x即可。具体实现我们可以递归处理,看代码。

代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define int ll
#define il inline
const int inf = 0x3f3f3f3f, N = 1e5 + 5;
//适用于正负数,(int,long long,float,double)
template <class T>
il bool read(T &ret)
{
char c;
int sgn;
T bit=0.1;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
if(c==' '||c=='\n')
{
ret*=sgn;
return 1;
}
while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;
ret*=sgn;
return 1;
}
// 线段树
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
int n, M, T;
int head[N], tot;
int top[N]; // top[v]即v所在重链的顶端结点
int fa[N]; // 父节点
int deep[N]; // 深度
int num[N]; // num[v] 以v为根的子树结点数
int p[N]; // p[v]为v的dfs位置
int fp[N]; // 与p相反
int son[N]; // 重子编号
int pos;
int mi[N << 2],val[N];
void pushUp(int rt)
{
mi[rt] = min(mi[rt << 1], mi[rt << 1 | 1]);
}
void build(int l, int r, int rt)
{
mi[rt] = inf;
if (l == r)
{
mi[rt]=val[fp[l]];
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
pushUp(rt);
}
int query(int L, int R, int l, int r, int rt)
{
if (L <= l && r <= R)
return mi[rt];
int m = (l + r) >> 1;
int ret = inf;
if (L <= m) ret = min(ret, query(L, R, lson));
if (R > m) ret = min(ret, query(L, R, rson));
return ret;
}
void update(int p, int x, int l, int r, int rt)
{
if (l == r)
{
mi[rt] = x;
return;
}
int m = (r + l) >> 1;
if (p <= m) update(p, x, lson);
else update(p, x, rson);
pushUp(rt);
} // 树链剖分
struct Edge
{
int to, next,w;
} edge[N * 2]; void init()
{
tot = 0;
pos = 0;
memset(head,-1,sizeof(head));
memset(son, -1,sizeof(son));
} void add(int u, int v,int w)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].w=w;
head[u] = tot++;
} void dfs1(int u, int pre, int d)
{
deep[u] = d;
fa[u] = pre;
num[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v != pre)
{
val[v]=edge[i].w;
dfs1(v, u, d + 1);
num[u] += num[v];
if (son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void dfs2(int u, int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if (son[u] == -1)
return;
dfs2(son[u], sp);
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v != son[u] && v != fa[u])
dfs2(v, v);
}
} int queryMin(int u, int v)
{
int f1 = top[u], f2 = top[v];
int tmp = inf;
while (f1 != f2)
{
if (deep[f1] < deep[f2])
{
swap(f1, f2);
swap(u, v);
}
tmp = min(tmp, query(p[f1], p[u], 0, pos - 1, 1));
u = fa[f1];
f1 = top[u];
}
if (u == v) return tmp;
if (deep[u] > deep[v]) swap(u, v);
return min(tmp, query(p[son[u]], p[v], 0, pos - 1, 1));
} int all=0;
bool fun(ll L,ll R,ll l,ll r,ll rt,ll x)
{
if(L<=l&&r<=R&&mi[rt]>=x)
{
return true;
}
if(l==r)
{
if(mi[rt]>=x)
return true;
all-=(x-mi[rt]);
return all>=0;
}
int m=(l+r)>>1;
if(R<=m)
{
return fun(L,R,lson,x);
}
else if(L>m)
{
return fun(L,R,rson,x);
}
else
return fun(L,m,lson,x)&&fun(m+1,R,rson,x);
}
bool check(ll u,ll v,ll x)
{
int f1 = top[u], f2 = top[v];
while (f1 != f2)
{
if (deep[f1] < deep[f2])
{
swap(f1, f2);
swap(u, v);
}
if(!fun(p[f1], p[u], 0, pos - 1, 1,x))
return false;
u = fa[f1];
f1 = top[u];
}
if (u == v) return true;
if (deep[u] > deep[v]) swap(u, v);
return fun(p[son[u]], p[v], 0, pos - 1, 1,x);
}
signed main()
{
read(T);
int cs=0;
while (T--)
{
init();
read(n),read(M);
for(int i=0; i<n-1; i++)
{
ll u,v,w;
read(u),read(v),read(w);
add(u,v,w);
add(v,u,w);
}
dfs1(1, 0, 0);
dfs2(1, 1);
build(0, pos - 1, 1);
printf("Case #%lld:\n",++cs);
while (M--)
{
ll s,t,k,a,b;
read(s),read(t),read(k),read(a),read(b);
ll ans=queryMin(s,t);
if(k<min(a,b))
{
printf("%lld\n",ans);
}
else if(a<=b)
{
ans+=k/a;
printf("%lld\n",ans);
}
else
{
if(k>a)
ans+=(k-a)/b+1;
ll l=ans,r=10000,mid;
while(l<=r)
{
mid=(l+r)>>1;
all=k/b;
if(check(s,t,mid))
{
ans=mid;
l=mid+1;
}
else
r=mid-1;
}
printf("%lld\n",ans);
} }
}
return 0;
}

HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)的更多相关文章

  1. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  2. 数据结构(主席树):HDU 4729 An Easy Problem for Elfness

    An Easy Problem for Elfness Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (J ...

  3. HDU 4729 An Easy Problem for Elfness (主席树,树上第K大)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一个带边权的图.对于每一个询问(S , ...

  4. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  5. HDU 4729 An Easy Problem for Elfness 主席树

    题意: 给出一棵树,每条边有一个容量. 有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量. 有两种方法可以增大流量: 花费\(A\)可以新修一条 ...

  6. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  7. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  8. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  9. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

随机推荐

  1. 转战物联网·基础篇08-例说MQTT协议各控制报文

      前面讨论了MQTT协议的控制报文的格式,下面分别举例探讨各个控制报文的详细内容. 01.CONNECT – 连接服务端   客户端到服务端的网络连接建立后,客户端发送给服务端的第一个报文必须是CO ...

  2. luoguP1020 导弹拦截

    题意 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国 ...

  3. Scrum会议(十周)

    1.任务分配 2.会议内容探讨了本次取得的重大突破和后续要继续开展的工作.分析了自己在前端开发遇到的问题,以及如何优化自己的前端界面.然后分工,每人都去优化一部分界面,比如段祥负责个人中心的优化,程吉 ...

  4. 最小化MarkdownPad 2安装体积(win10)

    一.原因 MarkdownPad2在Win10当中可能无法正常运行,右侧预览界面会出现错误"This view has crashed!"查阅官网FAQ得知大多数情况下安装Awes ...

  5. LG4158 「SCOI2009」粉刷匠 线性DP

    问题描述 LG4158 题解 设\(opt[i][j][k]\)代表到\((i,k)\)刷了\(j\)次的方案数. 一开始DP顺序有点问题,调了很长时间. 务必考虑清楚DP顺序问题 \(\mathrm ...

  6. 第04组 Alpha冲刺(3/4)

    队名:斗地组 组长博客:地址 作业博客:Alpha冲刺(3/4) 各组员情况 林涛(组长) 过去两天完成了哪些任务: 1.收集各个组员的进度 2.写博客 展示GitHub当日代码/文档签入记录: 接下 ...

  7. php处理curl的返回结果

    最简单的方式: json_decode($res,true): 结果都是:

  8. 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)

    [CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...

  9. 深入理解Java中的Garbage Collection

    前提 最近由于系统业务量比较大,从生产的GC日志(结合Pinpoint)来看,需要对部分系统进行GC调优.但是鉴于以往不是专门做这一块,但是一直都有零散的积累,这里做一个相对全面的总结.本文只针对Ho ...

  10. 深入理解JVM,虚拟机类加载机制

    类加载过程概览 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括以下7个阶段: 加载(Loading) 验证(Verification) 准备(Preparation) 解析(Re ...