题意

链接:https://cn.vjudge.net/problem/HDU-4729

给你n个点,然你求两个点s和t之间的最大流.而且你有一定的钱k,可以进行两种操作

1.在任意连个点之间建立一个单位1的流,费用a

2.将原先的流扩大1个单位,费用b

思路

题目已经说了是一棵树,那么树上两点的最大流就是两点路径上的最小值。其实两种操作各一次对最大流的贡献是相等的。我们分类讨论:

  1. 如果a<=b,直接算第一种方案即可,直接给s、t连一条边,对答案的贡献是k/a。
  2. 如果a>b,分两种情况。如果k>a,我们可以先操作一次方案一,即先给s、t连一条边,再对这条边进行扩大,这种方法对答案的贡献是(k-a)/b+1;如果k<=a,那么我们只扩大,肯定是先把最小的边扩大了,再看扩大新的最小边……直接暴力肯定不行,我们二分最大流x,我们可以扩大k/b次,那么判断一下在k/b次内能不能使得s到t的最小值>=x即可。具体实现我们可以递归处理,看代码。

代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define int ll
#define il inline
const int inf = 0x3f3f3f3f, N = 1e5 + 5;
//适用于正负数,(int,long long,float,double)
template <class T>
il bool read(T &ret)
{
char c;
int sgn;
T bit=0.1;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
if(c==' '||c=='\n')
{
ret*=sgn;
return 1;
}
while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;
ret*=sgn;
return 1;
}
// 线段树
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
int n, M, T;
int head[N], tot;
int top[N]; // top[v]即v所在重链的顶端结点
int fa[N]; // 父节点
int deep[N]; // 深度
int num[N]; // num[v] 以v为根的子树结点数
int p[N]; // p[v]为v的dfs位置
int fp[N]; // 与p相反
int son[N]; // 重子编号
int pos;
int mi[N << 2],val[N];
void pushUp(int rt)
{
mi[rt] = min(mi[rt << 1], mi[rt << 1 | 1]);
}
void build(int l, int r, int rt)
{
mi[rt] = inf;
if (l == r)
{
mi[rt]=val[fp[l]];
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
pushUp(rt);
}
int query(int L, int R, int l, int r, int rt)
{
if (L <= l && r <= R)
return mi[rt];
int m = (l + r) >> 1;
int ret = inf;
if (L <= m) ret = min(ret, query(L, R, lson));
if (R > m) ret = min(ret, query(L, R, rson));
return ret;
}
void update(int p, int x, int l, int r, int rt)
{
if (l == r)
{
mi[rt] = x;
return;
}
int m = (r + l) >> 1;
if (p <= m) update(p, x, lson);
else update(p, x, rson);
pushUp(rt);
} // 树链剖分
struct Edge
{
int to, next,w;
} edge[N * 2]; void init()
{
tot = 0;
pos = 0;
memset(head,-1,sizeof(head));
memset(son, -1,sizeof(son));
} void add(int u, int v,int w)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].w=w;
head[u] = tot++;
} void dfs1(int u, int pre, int d)
{
deep[u] = d;
fa[u] = pre;
num[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v != pre)
{
val[v]=edge[i].w;
dfs1(v, u, d + 1);
num[u] += num[v];
if (son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void dfs2(int u, int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if (son[u] == -1)
return;
dfs2(son[u], sp);
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v != son[u] && v != fa[u])
dfs2(v, v);
}
} int queryMin(int u, int v)
{
int f1 = top[u], f2 = top[v];
int tmp = inf;
while (f1 != f2)
{
if (deep[f1] < deep[f2])
{
swap(f1, f2);
swap(u, v);
}
tmp = min(tmp, query(p[f1], p[u], 0, pos - 1, 1));
u = fa[f1];
f1 = top[u];
}
if (u == v) return tmp;
if (deep[u] > deep[v]) swap(u, v);
return min(tmp, query(p[son[u]], p[v], 0, pos - 1, 1));
} int all=0;
bool fun(ll L,ll R,ll l,ll r,ll rt,ll x)
{
if(L<=l&&r<=R&&mi[rt]>=x)
{
return true;
}
if(l==r)
{
if(mi[rt]>=x)
return true;
all-=(x-mi[rt]);
return all>=0;
}
int m=(l+r)>>1;
if(R<=m)
{
return fun(L,R,lson,x);
}
else if(L>m)
{
return fun(L,R,rson,x);
}
else
return fun(L,m,lson,x)&&fun(m+1,R,rson,x);
}
bool check(ll u,ll v,ll x)
{
int f1 = top[u], f2 = top[v];
while (f1 != f2)
{
if (deep[f1] < deep[f2])
{
swap(f1, f2);
swap(u, v);
}
if(!fun(p[f1], p[u], 0, pos - 1, 1,x))
return false;
u = fa[f1];
f1 = top[u];
}
if (u == v) return true;
if (deep[u] > deep[v]) swap(u, v);
return fun(p[son[u]], p[v], 0, pos - 1, 1,x);
}
signed main()
{
read(T);
int cs=0;
while (T--)
{
init();
read(n),read(M);
for(int i=0; i<n-1; i++)
{
ll u,v,w;
read(u),read(v),read(w);
add(u,v,w);
add(v,u,w);
}
dfs1(1, 0, 0);
dfs2(1, 1);
build(0, pos - 1, 1);
printf("Case #%lld:\n",++cs);
while (M--)
{
ll s,t,k,a,b;
read(s),read(t),read(k),read(a),read(b);
ll ans=queryMin(s,t);
if(k<min(a,b))
{
printf("%lld\n",ans);
}
else if(a<=b)
{
ans+=k/a;
printf("%lld\n",ans);
}
else
{
if(k>a)
ans+=(k-a)/b+1;
ll l=ans,r=10000,mid;
while(l<=r)
{
mid=(l+r)>>1;
all=k/b;
if(check(s,t,mid))
{
ans=mid;
l=mid+1;
}
else
r=mid-1;
}
printf("%lld\n",ans);
} }
}
return 0;
}

HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)的更多相关文章

  1. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  2. 数据结构(主席树):HDU 4729 An Easy Problem for Elfness

    An Easy Problem for Elfness Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (J ...

  3. HDU 4729 An Easy Problem for Elfness (主席树,树上第K大)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一个带边权的图.对于每一个询问(S , ...

  4. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  5. HDU 4729 An Easy Problem for Elfness 主席树

    题意: 给出一棵树,每条边有一个容量. 有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量. 有两种方法可以增大流量: 花费\(A\)可以新修一条 ...

  6. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  7. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  8. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  9. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

随机推荐

  1. go语言设计模式之observer

    observer.go package observer import ( "fmt" ) type Observer interface { Notify(string) } t ...

  2. 算法问题实战策略 BOARDCOVER

    地址 https://algospot.com/judge/problem/read/BOARDCOVER 解法 DFS 最近似乎在简单DFS上花费太多时间了 首先扫描地图 统计可覆盖的元素个数 如果 ...

  3. QT新建空白项目-添加QT设计师界面类时出现的各种库无法导入识别

    按照教材上先新建一个空的项目--添加Qt设计师界面类时 出现各种 库无法识别 解决方法: 在 .pro文件中加入一行 QT += widgets 去构建中先执行 qmake 然后再构建一下  ok了 ...

  4. As Simple as One and Two

    time limit per test3 secondsmemory limit per test256 megabytesinput: standard inputoutput: standard ...

  5. Luogu P5298 [PKUWC2018]Minimax

    好劲的题目啊,根本没往线段树合并方面去想啊 首先每种权值都有可能出现,因此我们先排个序然后一个一个求概率 由于此时数的值域变成\([1,m]\)(离散以后),我们可以设一个DP:\(f_{x,i}\) ...

  6. 干货 | 国内互联网公司是如何做微服务实践的?(附PPT下载)

    微服务的概念最早由Martin Fowler与James Lewis于2014年共同提出,并随着Netflix最佳实践的发布而为业界所知.如今,在国内有了大量的微服务实践案例,5月18日,网易云联合云 ...

  7. gRPC+gRPC Gateway+swagger小记

    前言 本文记录了grpc-gateway的简单使用. 定义proto 先来看看最常规的 syntax = "proto3"; package protos; service Gre ...

  8. SSD与HDD、HHD的区别

    SSD与HDD.HHD的区别 HDD机械硬盘 SSD固态硬盘 HHD混合硬盘

  9. WPF DataGrid显示MySQL查询信息,且可删除、修改、插入 (原发布 csdn 2018-10-13 20:07:28)

    1.入行好几年了,工作中使用数据库几率很小(传统行业).借着十一假期回家机会,学习下数据库. 2.初次了解数据库相关知识,如果本文有误,还望告知. 3.本文主要目的,记录下wpf界面显示数据库信息,且 ...

  10. 机器学习常见的几种评价指标:精确率(Precision)、召回率(Recall)、F值(F-measure)、ROC曲线、AUC、准确率(Accuracy)

    原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注 ...