A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell
the frog the number of possible starting grids that can reach (ex,ey)

!

InputFirst line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.

⋅ 1≤ex,ey≤109.OutputFor every test case, you should output "
Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.

Sample Input

3
6 10
6 8
2 8

Sample Output

Case #1: 1
Case #2: 2
Case #3: 3

OJ-ID:
hdu-5584

author:
Caution_X

date of submission:
20191021

tags:
math

description modelling:
青蛙跳,每次移动从(x,y)->(x,y+lcm(x,y))或(x,y)->(x+lcm(x,y),y)

major steps to solve it:
设当前位置(at,bt),则下一步为(at(1+b),bt)或(at,bt(1+a))
那么反过来推,可以得到当前步(at,bt),则上一步为(at,bt/(a+1))或(at/(1+b),bt)
以此类推直到b无法被(1+a)整除或者a无法被(1+b)整除

AC code:

#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
int get_gcd(int x,int y)
{
if(!x)return y;
return get_gcd(y%x,x);
}
int main()
{
//freopen("input.txt","r",stdin);
int n,x,y;
scanf("%d",&n);
for(int i=; i<=n; ++i) {
int ans=;
scanf("%d%d",&x,&y);
int c=get_gcd(x,y);
x/=c,y/=c;
if(x>y)swap(x,y);
while(y%(x+)==) {
ans++;
y/=(x+);
if(x>y)swap(x,y);
}
printf("Case #%d: %d\n",i,++ans);
}
return ;
}

LCM Walk HDU - 5584的更多相关文章

  1. L - LCM Walk HDU - 5584 (数论)

    题目链接: L - LCM Walk HDU - 5584 题目大意:首先是T组测试样例,然后给你x和y,这个指的是终点.然后问你有多少个起点能走到这个x和y.每一次走的规则是(m1,m2)到(m1+ ...

  2. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  3. HDU5584 LCM Walk 数论

    LCM Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  4. hdu-5584 LCM Walk(数论)

    题目链接:LCM Walk Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others)To ...

  5. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  6. HDU 5584 LCM Walk【搜索】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意: 分析: 这题比赛的时候卡了很久,一直在用数论的方法解决. 其实从终点往前推就可以发现, ...

  7. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  8. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

  9. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

随机推荐

  1. php使用supervisor管理进程脚本

    supervisor是用python开发的一个在linux系统下的进程管理工具,可以方便的监听,启动,停止一个或多个进程.当一个进程被意外杀死后,supervisor监听到后,会自动重新拉起进程. 一 ...

  2. oracle 中 to_date 函数的用法

    常犯错的使用方法. to_date('2019-08-12 22:05:','yyyy-MM-dd HH24:mm:ss') Oracle中会引起错误:"ORA 01810 格式代码出现两次 ...

  3. Scala,Java,Python 3种语言编写Spark WordCount示例

    首先,我先定义一个文件,hello.txt,里面的内容如下: hello sparkhello hadoophello flinkhello storm Scala方式 scala版本是2.11.8. ...

  4. log4net的配置及使用

    网上查了有很多种写法和配置,结果百度出来都是几种方法混合写法,拷在一起结果还不能正常运行.因此把自己做成功的代码写上来做个备份. 运行环境:log4net 2.03版本,.net 4.5 大体步骤为: ...

  5. vs2017 发布工具 Installer 发包遇到的问题处理

    一. 遇到的问题. ERROR: 要在“系统必备”对话框中启用“从与我的应用程序相同的位置下载系统必备组件”,必须将“Microsoft .NET Framework 4.7.2 (x86 和 x64 ...

  6. Python 自定义元类的两种写法

    有关元类是什么大家自己搜索了解,我这里写一下实现元类的两种写法 # 自定义元类 #继承type class LowercaseMeta(type): ''' 修改类的属性名称为小写的元类 ''' # ...

  7. python凯撒加密

    在密码学中,恺撒密码是一种最简单且最广为人知的加密技术.它是一种替换加密的技术,明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文.例,当偏移量是3的时候,所有的字母A将 ...

  8. 高并发高可、O2O、微服务架构用学习网站

    高并发高可.O2O.微服务架构用学习网站 https://www.itkc8.com 非常感谢http://www.cnblogs.com/skyblog/p/5044486.html 关于架构,笔者 ...

  9. envoy的配置文件的样子

    yaml文件 admin: access_log_path: /tmp/admin_access.log address: socket_address: protocol: TCP address: ...

  10. c# 第37节 接口的实现与继承

    本节内容: 1:接口继承注意 2:开发封闭原则: 3:实例解释接口的作用 1:接口继承注意 接口的继承: :类继承具有单根性,接口可多重继承: :接口继承多个接口的时候,派生接口名与父接口用冒号隔开, ...