【UOJ#308】【UNR#2】UOJ拯救计划
【UOJ#308】【UNR#2】UOJ拯救计划
题面
题解
如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数。
然而模\(6\)这个东西很有意思,\(6=2*3\),所以我们只需要考虑其模\(2\)和模\(3\)的结果了。
而最终答案的贡献是\(\sum_{i=1}^k A_{k}^i f[i]\),当\(i\ge 3\)的时候\(6|A_k^i\),所以我们只需要知道\(f[0],f[1],f[2]\)的值。
\(f[0]\)的值?当然是\(0\)啊。
\(f[1]\)的话,如果每个连通块都没有边的话就有方案数\(1\),否则\(0\)。
\(f[2]\)的话,二分图染色,如果可以分成二分图,答案就是\(2\)的连通块个数次方
实际上因为只要\(m\neq 0\),答案模\(2\)一定等于\(0\),所以只需要考虑\(3\)的情况。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,K;
int fpow(int a,int b){int s=1;while(b){if(b&1)s=s*a%6;a=a*a%6;b>>=1;}return s;}
vector<int> E[MAX];int col[MAX];bool fl;
void dfs(int u,int c)
{
if(!fl)return;
if(~col[u]){if(col[u]^c)fl=false;return;}
col[u]=c;
for(int v:E[u])dfs(v,c^1);
}
int main()
{
int T=read();
while(T--)
{
n=read();m=read();K=read();
if(!m){printf("%d\n",fpow(K,n));continue;}
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
E[u].push_back(v);
E[v].push_back(u);
}
for(int i=1;i<=n;++i)col[i]=-1;
fl=true;int cnt=0;
for(int i=1;i<=n;++i)if(col[i]==-1)dfs(i,0),++cnt;
if(!fl)puts("0");
else printf("%d\n",K%6*(K-1)%6*fpow(2,cnt)%6*2%6);
for(int i=1;i<=n;++i)E[i].clear();
}
return 0;
}
【UOJ#308】【UNR#2】UOJ拯救计划的更多相关文章
- 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...
- uoj#308. 【UNR #2】UOJ拯救计划(并查集)
传送门 如果把答案写出来,就是\(\sum_{i=1}^ki!\times {k\choose i}\times f_i\),其中\(f_i\)为选\(i\)种颜色方案 发现如果\(i\geq 3\) ...
- uoj308 【UNR #2】UOJ拯救计划
传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$c ...
- 【UNR #2】UOJ拯救计划
UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不 ...
- [UOJ UNR#2 UOJ拯救计划]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...
- A. 【UNR #2】UOJ拯救计划
题解: 感觉多了解一些npc问题是很有用的.. 就不会像我一样完全不考虑模数的性质 前面60分大概是送分 后面主要考虑一下%6带来的影响 平常都是那么大的模数,突然这么小??? 考虑正好使用k种颜色的 ...
- Uoj308【UNR #2】UOJ拯救计划
分析:比较难分析的一道题,先把式子写出来,ans=∑C(k,i)*f(i),f(i)是选i个颜色的方案数.这个模数有点奇怪,比较小而且是合数,说不定就会有某种规律,如果i >= 3,可以发现C( ...
- UOJ #460 新年的拯救计划
清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$ ...
- UOJ#460. 新年的拯救计划 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2 ...
随机推荐
- GO 数组
一.数组(Array) 1.1 什么是数组 Go 语言提供了数组类型的数据结构. 数组是具有相同唯一类型的一组已编号且长度固定的数据项序列,这种类型可以是任意的原始类型例如整形.字符串或者自定义类型. ...
- PI对于两个SAP客户端通道的了解
你把你的报文放到ESR的MM里面试一下就知道了 日期格式之类的,可能有转换的你要输入2019-05-13这种 OA到PI不选,都是到一个系统,由PI再来分流 如果你要做成由OA来选的,就要参考类似于 ...
- .net core使用NLog日志
前言:NLog日志对.net core web项目最新的支持在官网上有最新的介绍: 官网介绍地址:https://github.com/NLog/NLog/wiki/Getting-started-w ...
- indexOf()字符位置
package seday01; /** * int indexOf(String str) * 查找给定字符串在当前字符串中的位置,若返回值为-1,则 * 表示当前字符串中不含有给定的内容. * @ ...
- SpringBoot(三) 配置文件 篇章
SpringBoot 配置文件默认为application.properties,但是本章节主要讲解yaml文件配置,因为现在的趋势是使用yaml,它是类似于标准通用标记语言的子集XML的数据描述语言 ...
- FileSizeLimitExceededException
org.apache.tomcat.util.http.fileupload.FileUploadBase$FileSizeLimitExceededException 很明显,这异常的意思是文件大小 ...
- nginx是怎么处理http请求的
nginx是怎么处理http请求的 参考:How nginx processes a request nginx first decides which server should process t ...
- win7个性化不能换界面:此页面上的一个或多个设置已被系统管理员禁用,关机里的切换用户和锁定为灰色
win7个性化不能换界面:此页面上的一个或多个设置已被系统管理员禁用,关机里的切换用户和锁定为灰色 找到注册表 cmd-regedit HKEY_CURRENT_USER\Software\Micro ...
- 01day-webpack
<!-- .sass后缀的文件名 比较老了 现在它的后缀名是.scss 其实他们是同一个东西 只是 后缀名发生了变化 以 .sass写的文件的内容是 他没有括号 没有分号 有点怪 它跟新为了.s ...
- win10连接共享打印机
一.在运行中输入“\\共享打印机的主机ip”. 二.如果出现下面弹窗: 1.按Win键弹出开始菜单,直接在键盘上按zucelue,这个时候开始菜单里会检索到“编辑组策略”这个程序,按回车运行该程序.2 ...