Metrics类型
Metrics类型
在上一小节中我们带领读者了解了Prometheus的底层数据模型,在Prometheus的存储实现上所有的监控样本都是以time-series的形式保存在Prometheus内存的TSDB(时序数据库)中,而time-series所对应的监控指标(metric)也是通过labelset进行唯一命名的。
从存储上来讲所有的监控指标metric都是相同的,但是在不同的场景下这些metric又有一些细微的差异。 例如,在Node Exporter返回的样本中指标node_load1反应的是当前系统的负载状态,随着时间的变化这个指标返回的样本数据是在不断变化的。而指标node_cpu所获取到的样本数据却不同,它是一个持续增大的值,因为其反应的是CPU的累积使用时间,从理论上讲只要系统不关机,这个值是会无限变大的。
为了能够帮助用户理解和区分这些不同监控指标之间的差异,Prometheus定义了4中不同的指标类型(metric type):Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)。
在Exporter返回的样本数据中,其注释中也包含了该样本的类型。例如:
# HELP node_cpu Seconds the cpus spent in each mode.
# TYPE node_cpu counter
node_cpu{cpu="cpu0",mode="idle"} 362812.7890625
Counter:只增不减的计数器
Counter类型的指标其工作方式和计数器一样,只增不减(除非系统发生重置)。常见的监控指标,如http_requests_total,node_cpu都是Counter类型的监控指标。 一般在定义Counter类型指标的名称时推荐使用_total作为后缀。
Counter是一个简单但有强大的工具,例如我们可以在应用程序中记录某些事件发生的次数,通过以时序的形式存储这些数据,我们可以轻松的了解该事件产生速率的变化。PromQL内置的聚合操作和函数可以用户对这些数据进行进一步的分析:
例如,通过rate()函数获取HTTP请求量的增长率:
rate(http_requests_total[5m])
查询当前系统中,访问量前10的HTTP地址:
topk(10, http_requests_total)
Gauge:可增可减的仪表盘
与Counter不同,Gauge类型的指标侧重于反应系统的当前状态。因此这类指标的样本数据可增可减。常见指标如:node_memory_MemFree(主机当前空闲的内容大小)、node_memory_MemAvailable(可用内存大小)都是Gauge类型的监控指标。
通过Gauge指标,用户可以直接查看系统的当前状态:
node_memory_MemFree
对于Gauge类型的监控指标,通过PromQL内置函数delta()可以获取样本在一段时间返回内的变化情况。例如,计算CPU温度在两个小时内的差异:
delta(cpu_temp_celsius{host="zeus"}[2h])
还可以使用deriv()计算样本的线性回归模型,甚至是直接使用predict_linear()对数据的变化趋势进行预测。例如,预测系统磁盘空间在4个小时之后的剩余情况:
predict_linear(node_filesystem_free{job="node"}[1h], 4 * 3600)
使用Histogram和Summary分析数据分布情况
除了Counter和Gauge类型的监控指标以外,Prometheus还定义分别定义Histogram和Summary的指标类型。Histogram和Summary主用用于统计和分析样本的分布情况。
在大多数情况下人们都倾向于使用某些量化指标的平均值,例如CPU的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统API调用的平均响应时间为例:如果大多数API请求都维持在100ms的响应时间范围内,而个别请求的响应时间需要5s,那么就会导致某些WEB页面的响应时间落到中位数的情况,而这种现象被称为长尾问题。
为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在010ms之间的请求数有多少而1020ms之间的请求数又有多少。通过这种方式可以快速分析系统慢的原因。Histogram和Summary都是为了能够解决这样问题的存在,通过Histogram和Summary类型的监控指标,我们可以快速了解监控样本的分布情况。
例如,指标prometheus_tsdb_wal_fsync_duration_seconds的指标类型为Summary。 它记录了Prometheus Server中wal_fsync处理的处理时间,通过访问Prometheus Server的/metrics地址,可以获取到以下监控样本数据:
# HELP prometheus_tsdb_wal_fsync_duration_seconds Duration of WAL fsync.
# TYPE prometheus_tsdb_wal_fsync_duration_seconds summary
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.5"} 0.012352463
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.9"} 0.014458005
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.99"} 0.017316173
prometheus_tsdb_wal_fsync_duration_seconds_sum 2.888716127000002
prometheus_tsdb_wal_fsync_duration_seconds_count 216
从上面的样本中可以得知当前Prometheus Server进行wal_fsync操作的总次数为216次,耗时2.888716127000002s。其中中位数(quantile=0.5)的耗时为0.012352463,9分位数(quantile=0.9)的耗时为0.014458005s。
在Prometheus Server自身返回的样本数据中,我们还能找到类型为Histogram的监控指标prometheus_tsdb_compaction_chunk_range_bucket。
# HELP prometheus_tsdb_compaction_chunk_range Final time range of chunks on their first compaction
# TYPE prometheus_tsdb_compaction_chunk_range histogram
prometheus_tsdb_compaction_chunk_range_bucket{le="100"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="1600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="6400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="25600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="102400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="409600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="1.6384e+06"} 260
prometheus_tsdb_compaction_chunk_range_bucket{le="6.5536e+06"} 780
prometheus_tsdb_compaction_chunk_range_bucket{le="2.62144e+07"} 780
prometheus_tsdb_compaction_chunk_range_bucket{le="+Inf"} 780
prometheus_tsdb_compaction_chunk_range_sum 1.1540798e+09
prometheus_tsdb_compaction_chunk_range_count 780
与Summary类型的指标相似之处在于Histogram类型的样本同样会反应当前指标的记录的总数(以_count作为后缀)以及其值的总量(以_sum作为后缀)。不同在于Histogram指标直接反应了在不同区间内样本的个数,区间通过标签len进行定义。
同时对于Histogram的指标,我们还可以通过histogram_quantile()函数计算出其值的分位数。不同在于Histogram通过histogram_quantile函数是在服务器端计算的分位数。 而Sumamry的分位数则是直接在客户端计算完成。因此对于分位数的计算而言,Summary在通过PromQL进行查询时有更好的性能表现,而Histogram则会消耗更多的资源。反之对于客户端而言Histogram消耗的资源更少。在选择这两种方式时用户应该按照自己的实际场景进行选择。
Metrics类型的更多相关文章
- Metrics
系统开发到一定的阶段,线上的机器越来越多,就需要一些监控了,除了服务器的监控,业务方面也需要一些监控服务.Metrics作为一款监控指标的度量类库,提供了许多工具帮助开发者来完成自定义的监控工作. 举 ...
- 使用metrics统计接口tps
metrics的简单介绍 metrics是一种性能指标工具,有很多开源工具使用之来来作为其性能监控,如Hadoop,Kafka,Spark,JStorm等. metrics使用最主要有三个东西: Me ...
- 自定义Metrics:让Prometheus监控你的应用程序
前言 Prometheus社区提供了大量的官方以及第三方Exporters,可以满足Prometheus的采纳者快速实现对关键业务,以及基础设施的监控需求. 如上所示,一个简单的应用以及环境架构.一般 ...
- Prometheus学习系列(三)之Prometheus 概念:数据模型、metric类型、任务、实例
前言 本文来自Prometheus官网手册1.Prometheus官网手册2 和 Prometheus简介 说明 Prometheus从根本上存储的所有数据都是时间序列: 具有时间戳的数据流只属于单个 ...
- Apache Flink 进阶(八):详解 Metrics 原理与实战
本文由 Apache Flink Contributor 刘彪分享,本文对两大问题进行了详细的介绍,即什么是 Metrics.如何使用 Metrics,并对 Metrics 监控实战进行解释说明. 什 ...
- Spring Boot
Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置.通过 ...
- Metrics-Java版的指标度量工具之一
Metrics是一个给JAVA服务的各项指标提供度量工具的包,在JAVA代码中嵌入Metrics代码,可以方便的对业务代码的各个指标进行监控,同时,Metrics能够很好的跟Ganlia.Graphi ...
- 深入学习微框架:Spring Boot(转)
转:http://www.infoq.com/cn/articles/microframeworks1-spring-boot/ 相关参考: https://spring.io/guides/gs/s ...
- 深入学习微框架:Spring Boot - NO
http://blog.csdn.net/hengyunabc/article/details/50120001 Our primary goals are: Provide a radically ...
随机推荐
- Docker环境下的前后端分离项目部署与运维(十一)Docker Swarm技术
Docker Swarm技术 docker swarm技术(之前的docker集群都是在 一个虚拟主机上的,但是如果这个主机挂掉了over了,docker技术就是多个虚拟主机形成一个集群) Swarm ...
- 程序员修仙之路--优雅快速的统计千万级别uv(留言送书)
菜菜,咱们网站现在有多少PV和UV了? Y总,咱们没有统计pv和uv的系统,预估大约有一千万uv吧 写一个统计uv和pv的系统吧 网上有现成的,直接接入一个不行吗? 别人的不太放心,毕竟自己写的,自己 ...
- RocketMQ(6)---发送普通消息(三种方式)
发送普通消息(三种方式) RocketMQ 发送普通消息有三种实现方式:可靠同步发送.可靠异步发送.单向(Oneway)发送. 注意 :顺序消息只支持可靠同步发送. GitHub地址: https:/ ...
- javaWeb 概念介绍
一.javaWeb 1.概念:利用java语言进行基于互联网的开发 2.软件架构 (1)C/S Client/Server 客户端/服务器端 在用户本地有一个客户端程序,在远程有一个服务器程序 ...
- Nginx查看并发连接数
Nginx查看并发连接 通过界面查看 通过界面查看通过web界面查看时Nginx需要开启status模块,也就是安装Nginx时加上 --with-http_stub_status_module 然后 ...
- (数据科学学习手札64)在jupyter notebook中利用kepler.gl进行空间数据可视化
一.简介 kepler.gl是由Uber开发的进行空间数据可视化的开源工具,是Uber内部进行空间数据可视化的默认工具,通过其面向Python开放的接口包keplergl,我们可以在jupyter n ...
- 网络IO-阻塞、非阻塞、IO复用、异步
网络socket输入操作分为两个阶段:等待网络数据到达和将到达内核的数据复制到应用进程缓冲区.对这两个阶段不同的处理方式将网络IO分为不同的模型:IO阻塞模型.非阻塞模型.多路复用和异步IO. 一 阻 ...
- aspnetcore 实现简单的伪静态化
aspnetcore 实现简单的伪静态化 Intro 在我的活动室预约项目中,有一个公告模块,类似于新闻发布,个人感觉像新闻这种网页基本就是发布的时候编辑一次之后就再也不会改了,最适合静态化了, 静态 ...
- django基础知识之模板继承:
模板继承 模板继承可以减少页面内容的重复定义,实现页面内容的重用 典型应用:网站的头部.尾部是一样的,这些内容可以定义在父模板中,子模板不需要重复定义 block标签:在父模板中预留区域,在子模板中填 ...
- c++快速排序算法
c++快速排序算法 题目描述 利用快速排序算法将读入的NN个数从小到大排序后输出. 快速排序是信息学竞赛的必备算法之一.对于快速排序不是很了解的同学可以自行上网查询相关资料,掌握后独立完成.(C++选 ...