简单地说,KNN算法就是通过测量不同特征值之间的距离来对特征进行分类的一种算法。
  优点:精度高、对异常值不敏感、无数据输入假定。
  缺点:计算复杂度高、空间复杂度高。
  适用数据范围:数值型和标称型。
  工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。最后,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。
  以电影分类为例,现在有一个电影数据集,每个电影的字段为接吻镜头的个数、打斗镜头的个数以及对应的分类(爱情片 or 动作片),现在有一个未知分类的电影,知道了它
接吻镜头的个数和打斗镜头的个数,现在要对它进行分类。我们首先应该想到的就是计算它与其已经分类好的电影的距离(欧氏距离),然后取距离最近的k个数据,最后选择这k个数据出现次数最多的分类,作为这个电影的分类。
  

下面,我们用Python实现一个简单的例子

import numpy as pd

import operator

# 创建数据集

def createDataSet():
group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
# k-近邻算法
def classify0(inx, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
# np.tile(inx, (dataSetSize, 1)), 先沿着x轴的方向复制1, 再沿y轴复制dataSetSize
diffMat = np.tile(inx, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
# 获取distances从小到大的索引
sortedDistIndicies = distances.argsort()
classCount = {}
# 统计距离最小的k个标签出现的次数
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# key=operator.itemgetter(1): 按照值进行排序,降序
sortedclassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedclassCount[0][0] if '__name__' == '__main__':
  group, labels = createDataSet()
  print(classify0([0, 0], group, labels, 3)) # B

**刚刚开始学习,如有错误还请大神可以帮忙指正,更多例子可以参考《机器学习实战》这本书。
  

KNN学习笔记的更多相关文章

  1. K-means、KNN学习笔记

    1.K-means:聚类算法,无监督 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….dat ...

  2. opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR

    阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...

  3. 学习笔记之k-nearest neighbors algorithm (k-NN)

    k-nearest neighbors algorithm - Wikipedia https://en.wikipedia.org/wiki/K-nearest_neighbors_algorith ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  5. 学习笔记之机器学习(Machine Learning)

    机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...

  6. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  7. kNN算法笔记

    kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好 ...

  8. scikit-learn学习笔记-bili莫烦

    bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...

  9. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

随机推荐

  1. 初始bat命令

    任务:manven打包的jar包以及相关的bat文件,要将其设置为开机自启动. bat :批处理文件,通过简单的命令行方式对windows进行操作. 简单的bat命令: 1echo 显示命令,@带着个 ...

  2. 「刷题」Color 群论

    这道题乍一看挺水的,直接$ Ploya $就可以了,可是再看看数据范围:n<=1e9 那就是有1e9种置换,这不歇比了. 于是考虑式子的优化. 首先证明,转i次的置换的每个循环结大小是 $ gc ...

  3. CSPS模拟 47

    考试时T1没玩明白,用一个WA90把100盖住了? T1 Emotional Flutter 题目非常蠢萌,只是注意当你把黑块前伸s距离后,应把脚的长度视为0,而不应为1. T2 Endless Fa ...

  4. echarts动态刷新数据

    在这次的项目中图表显示的部分比较多,这边给分享下用到的图表的数据刷新 饼图最后的效果 先看下 前端部分 <div div style="height: 40%; width: 17.5 ...

  5. 最适合Java开发者的一本书和一软件

    一书-<Java编程思想> 一软件-IntelliJ IDEA Java自学是否可以成功,答案显而易见,可以. 自学Java关键看自己是否有毅力.是否有恒心. 自学Java 自学Java不 ...

  6. [转载]2.6 UiPath循环嵌套的介绍和使用

    一.循环嵌套的介绍 一个循环体内又包含另一个完整的循环结构,就称之为循环嵌套.内嵌的循环中还可以嵌套循环,这就是多层循环,也叫做多重循环. 二.在UiPath中结合使用循环嵌套生成99乘法表 1.打开 ...

  7. EFK教程 - ElasticSearch高性能高可用架构

    通过将elasticsearch的data.ingest.master角色进行分离,搭建起高性能+高可用的ES架构 作者:"发颠的小狼",欢迎转载与投稿 目录 ▪ 用途 ▪ 架构 ...

  8. linux cmake安装方法

    linux cmake安装方法 OpenCV 2.2以后的版本需要使用Cmake生成makefile文件,因此需要先安装cmake:还有其它一些软件都需要先安装cmake 1.在linux环境下打开网 ...

  9. Servlet中response的相关案例(重定型,验证码,ServletContext文件下载)

    重定向 首先设置状态码,设置响应头 //访问Demo1自动跳转至Demo2 //设置状态码 response.setStatus(302); //设置响应头 response.setHeader(&q ...

  10. 正则表达式 解决python2升python3的语法问题

      2019.9.12 更新   今天偶然看到 python 官网中,还介绍了一个专门的工具,用于 python2 升级 python3,以后有机会使用下看看 https://docs.python. ...