简单地说,KNN算法就是通过测量不同特征值之间的距离来对特征进行分类的一种算法。
  优点:精度高、对异常值不敏感、无数据输入假定。
  缺点:计算复杂度高、空间复杂度高。
  适用数据范围:数值型和标称型。
  工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。最后,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。
  以电影分类为例,现在有一个电影数据集,每个电影的字段为接吻镜头的个数、打斗镜头的个数以及对应的分类(爱情片 or 动作片),现在有一个未知分类的电影,知道了它
接吻镜头的个数和打斗镜头的个数,现在要对它进行分类。我们首先应该想到的就是计算它与其已经分类好的电影的距离(欧氏距离),然后取距离最近的k个数据,最后选择这k个数据出现次数最多的分类,作为这个电影的分类。
  

下面,我们用Python实现一个简单的例子

import numpy as pd

import operator

# 创建数据集

def createDataSet():
group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
# k-近邻算法
def classify0(inx, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
# np.tile(inx, (dataSetSize, 1)), 先沿着x轴的方向复制1, 再沿y轴复制dataSetSize
diffMat = np.tile(inx, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
# 获取distances从小到大的索引
sortedDistIndicies = distances.argsort()
classCount = {}
# 统计距离最小的k个标签出现的次数
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# key=operator.itemgetter(1): 按照值进行排序,降序
sortedclassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedclassCount[0][0] if '__name__' == '__main__':
  group, labels = createDataSet()
  print(classify0([0, 0], group, labels, 3)) # B

**刚刚开始学习,如有错误还请大神可以帮忙指正,更多例子可以参考《机器学习实战》这本书。
  

KNN学习笔记的更多相关文章

  1. K-means、KNN学习笔记

    1.K-means:聚类算法,无监督 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….dat ...

  2. opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR

    阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...

  3. 学习笔记之k-nearest neighbors algorithm (k-NN)

    k-nearest neighbors algorithm - Wikipedia https://en.wikipedia.org/wiki/K-nearest_neighbors_algorith ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  5. 学习笔记之机器学习(Machine Learning)

    机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...

  6. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  7. kNN算法笔记

    kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好 ...

  8. scikit-learn学习笔记-bili莫烦

    bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...

  9. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

随机推荐

  1. 程序员这十个java题你都会吗?

    前言 不论你是职场新人还是步入职场N年的职场新人大哥大~当然这个N<3~,我能担保你答不对这十个题~不要问我为什么这么自信~,这些个题还是"有水平"的javase的基础题,传 ...

  2. 使用“反向传播”迭代法求解y=√10

    X=√10,求X,也就是求Y=10 =X2 , X是多少. *重要的思想是,如何转化为可迭代求解的算法问题. *解数学问题,第一时间画图,求导,“直线化”. Y = X2 假如已知Y = 10 ,要求 ...

  3. 地精部落:dp

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

  4. Linux基础指令--韩顺平老师课程笔记

    一.vi和vim编辑器 ①.三种模式 所有的 Linux 系统都会内建 vi 文本编辑器.vim 具有程序编辑的能力,可以看做是 vi 的增强版本,可以主动的以字体颜色辨别语法的正确性,方便程序设计. ...

  5. [转载]1.3 UiPath变量的介绍和使用

    一.变量 变量主要用于存储数据,它在RPA中扮演重要的数据传递角色,是RPA编程不可或缺的一部分.它包括变量名称和变量的值,变量的值支持多种数据类型,包括从通用值,文本,数字,数据表,时间和日期,Ui ...

  6. VSCode JAVA环境配置使遇到的几个小问题

    1.出现的问题: The JAVA_HOME environment variable points to a missing or inaccessible folder等三个报错! 2.说明及解决 ...

  7. coco-stuff and thing

    Defining things and stuff. The literature provides definitions for several aspects of stuff and thin ...

  8. [LINQ2Dapper]最完整Dapper To Linq框架(七)---仓储模式

    目录 [LINQ2Dapper]最完整Dapper To Linq框架(一)---基础查询 [LINQ2Dapper]最完整Dapper To Linq框架(二)---动态化查询 [LINQ2Dapp ...

  9. mysql update获取主键

    mysql update获取主键<pre>SET @update_id := 0;UPDATE mobantestinfo1 SET info2 = 'value', id = (SELE ...

  10. MySQL使用查看表SELECT语句

    来源:实验楼 本节实验中学习了 SELECT 语句的常用方法: 基本语法 数学符号条件 AND OR IN 通配符 排序 SQL 内置函数和计算 子查询与连接查询 输入命令,下载代码: git clo ...