简单地说,KNN算法就是通过测量不同特征值之间的距离来对特征进行分类的一种算法。
  优点:精度高、对异常值不敏感、无数据输入假定。
  缺点:计算复杂度高、空间复杂度高。
  适用数据范围:数值型和标称型。
  工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。最后,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。
  以电影分类为例,现在有一个电影数据集,每个电影的字段为接吻镜头的个数、打斗镜头的个数以及对应的分类(爱情片 or 动作片),现在有一个未知分类的电影,知道了它
接吻镜头的个数和打斗镜头的个数,现在要对它进行分类。我们首先应该想到的就是计算它与其已经分类好的电影的距离(欧氏距离),然后取距离最近的k个数据,最后选择这k个数据出现次数最多的分类,作为这个电影的分类。
  

下面,我们用Python实现一个简单的例子

import numpy as pd

import operator

# 创建数据集

def createDataSet():
group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
# k-近邻算法
def classify0(inx, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
# np.tile(inx, (dataSetSize, 1)), 先沿着x轴的方向复制1, 再沿y轴复制dataSetSize
diffMat = np.tile(inx, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
# 获取distances从小到大的索引
sortedDistIndicies = distances.argsort()
classCount = {}
# 统计距离最小的k个标签出现的次数
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# key=operator.itemgetter(1): 按照值进行排序,降序
sortedclassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedclassCount[0][0] if '__name__' == '__main__':
  group, labels = createDataSet()
  print(classify0([0, 0], group, labels, 3)) # B

**刚刚开始学习,如有错误还请大神可以帮忙指正,更多例子可以参考《机器学习实战》这本书。
  

KNN学习笔记的更多相关文章

  1. K-means、KNN学习笔记

    1.K-means:聚类算法,无监督 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….dat ...

  2. opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR

    阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...

  3. 学习笔记之k-nearest neighbors algorithm (k-NN)

    k-nearest neighbors algorithm - Wikipedia https://en.wikipedia.org/wiki/K-nearest_neighbors_algorith ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  5. 学习笔记之机器学习(Machine Learning)

    机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...

  6. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  7. kNN算法笔记

    kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好 ...

  8. scikit-learn学习笔记-bili莫烦

    bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...

  9. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

随机推荐

  1. python基础-流程控制(if,while,for)

    今日内容总结 --流程控制(if,while,for) if:用来判断事物的对错.真假.是否执行.根据不同的情况判断,条件满足执行某条件下的语句 语法结构(3种) # 第一种,只有if结构.条件表达式 ...

  2. The reference to entity "characterEncoding" must end with the ';'

    在配置数据库连接池数据源时,本来没有错误,结果加上编码转换格式后eclipse突然报错: 这是怎么回事? 经过查询,发现这个错误其实很好解决. 首先,原因是: .xml文件中 ‘ & ’字符需 ...

  3. Android 4.2 获取应用缓存接口变化

    PackageManager.getPackageSizeInfo(String packageName, IPackageStatsObserver observer)不可用,改为PackageMa ...

  4. python——namedtuple

    namedtuple()概念理解分享 我们都知道元组tuple的概念,tuple是一个定义之后就不能够更改的可迭代对象,namedtuple作为tuple的兄弟具有同样的属性,一旦定义就不可以更改.但 ...

  5. JAVA项目打包成可运行的exe程序

    前言:本篇文章为原创,转载请注明地址,谢谢. 我们一些时候,可能需要需要把我们完成的java打包,打成jar文件或者exe文件.这时候就请鄙人的这篇文章. 言尽于此,Let‘s go! 一.导出jar ...

  6. 6. SOFAJRaft源码分析— 透过RheaKV看线性一致性读

    开篇 其实这篇文章我本来想在讲完选举的时候就开始讲线性一致性读的,但是感觉直接讲没头没尾的看起来比比较困难,所以就有了RheaKV的系列,这是RheaKV,终于可以讲一下SOFAJRaft的线性一致性 ...

  7. 关于Prometheus监控的思考:多标签埋点及Mbean

    使用 grafana+prometheus+jmx 作为普通的监控手段,是比较有用的.我之前的文章介绍了相应的实现办法. 但是,按照之前的实现,我们更多的只能是监控 单值型的数据,如请求量,tps 等 ...

  8. Sturts2整合Spring报错:org.springframework.beans.factory.BeanDefinitionStoreException: IOException parsing XML document from ServletContext resource [/WEB-INF/applicationContext.xml];

    十一月 17, 2019 1:11:44 下午 org.apache.tomcat.util.digester.SetPropertiesRule begin警告: [SetPropertiesRul ...

  9. mongodb基本命令,mongodb集群原理分析

    mongodb基本命令,mongodb集群原理分析 集合: 1.集合没有固定数据格式. 2. 数据: 时间类型: Date() 当前时间(js时间) new Date() 格林尼治时间(object) ...

  10. poj 3461 Oulipo(KMP)

    Oulipo Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 49378   Accepted: 19617 Descript ...