[TOC]
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

极大似然估计

一、最大似然原理

二、极大似然估计

极大似然估计是建立在最大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计。

简而言之,极大似然估计的目的是利用已知的样本结果,反推最有可能导致这样结果的参数值。

三、似然函数

假设一个样本集$D$的$n$个样本都是独立同分布的,并且该样本集为

\[
D={x_1,x_2,\ldots,x_n}
\]

似然函数(likelihood function):联合概率密度函数$p(D|\theta)\(称为相对于\){x_1,x_2,\ldots,x_n}\(的\)\theta$的似然函数。

\[
l(\theta) = p(D|\theta) = p(x_1,x_2,\ldots,x_n|\theta) = \prod_{i=1}^n p(x_i|\theta)
\]

四、极大似然函数估计值

如果$\hat{\theta}\(是\)\theta$参数空间中能使似然函数$l(\theta)\(最大的\)\theta$值,则$\hat{\theta}\(是最可能的参数值,那么\)\hat{\theta}\(是\)\theta$的最大似然估计量,记作

\[
\hat{\theta} = d(x_1,x_2,\ldots,x_n) = d(D)
\]

并且$\hat{\theta}(x_1,x_2,\ldots,x_n)$称作极大似然函数估计值。

五、求解极大似然函数

给出求解最大$\theta$值的公式

\[
\hat{\theta} = arg \underbrace{max}_\theta l(\theta) = arg \underbrace{max}_\theta \prod_{i=1}^n p(x_i|\theta)
\]

为了方便计算,定义对数似然函数$H(\theta)$,即对似然函数求对数

\[
H(\theta) = \ln{l(\theta)}
\]

因此求最大$\theta$值的公式变成了

\[
\hat{\theta} = arg \underbrace{max}_\theta H(\theta) = arg \underbrace{max}_\theta \ln{l(\theta)} = arg \underbrace{max}_\theta \prod_{i=1}^n \ln{p(x_i|\theta)}
\]

并且可以发现公式中只有一个变量$\theta$

5.1 未知参数只有一个

如果$\theta$为标量,在似然函数满足连续、可微的情况下,则极大似然估计量是下面微分方程的解

\[
{\frac{dH(\theta)}{d\theta}} = {\frac{d\ln{l(\theta)}}{d\theta}} = 0
\]

5.2 位置参数有多个

如果$\theta$为$k$维向量,可以把$\theta$记作$\theta = [\theta_1,\theta_2,\ldots,\theta_k]^T$,对$\theta_1,\theta_2,\ldots,\theta_k$求梯度,可得

\[
\Delta_\theta=[{\frac{\partial}{\partial_{\theta_1}}},{\frac{\partial}{\partial_{\theta_2}}},\cdots,{\frac{\partial}{\partial_{\theta_s}}}]^T
\]

如果似然函数满足连续、可导的情况下,则最大似然估计量就是如下方程的解:

\[
\Delta_\theta{H(\theta)} = \Delta_\theta\ln{l(\theta)} = \sum_{i=1}^n \Delta_\theta \ln(p(x_i|\theta)) = 0
\]

5.3 总结

方程的解只是一个估计值,只有在样本趋于无限多的时候,才会逐渐接近真实值。

B-概率论-极大似然估计的更多相关文章

  1. 【ML数学知识】极大似然估计

    它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...

  2. LR为什么用极大似然估计,损失函数为什么是log损失函数(交叉熵)

    首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可 ...

  3. 极大似然估计MLE 极大后验概率估计MAP

    https://www.cnblogs.com/sylvanas2012/p/5058065.html 写的贼好 http://www.cnblogs.com/washa/p/3222109.html ...

  4. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

  5. 极大既然估计和高斯分布推导最小二乘、LASSO、Ridge回归

    最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function ...

  6. 参数估计:最大似然估计MLE

    http://blog.csdn.net/pipisorry/article/details/51461997 最大似然估计MLE 顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因 ...

  7. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  8. ML 徒手系列 最大似然估计

    1.最大似然估计数学定义: 假设总体分布为f(x,θ),X1,X2...Xn为总体采样得到的样本.其中X1,X2...Xn独立同分布,可求得样本的联合概率密度函数为: 其中θ是需要求得的未知量,xi是 ...

  9. 又看了一次EM 算法,还有高斯混合模型,最大似然估计

    先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://w ...

随机推荐

  1. 决胜Flutter 第一章 熟悉战场

    欢迎参加“决胜Flutter” 实训课程,这里是你此次实训之旅的起点. 本章将带您快速了解移动开发的现状,然后向您介绍Flutter的发展历史以及优势特点,最后一起动手,搭建高效的开发环境. 由于Fl ...

  2. moco 入门及问题解决

    废话不多说 下载: http://repo1.maven.org/maven2/com/github/dreamhead/moco-runner/ 选择最新版本下载jar包 启动: 1:在本地jar包 ...

  3. .NET Core 3.0之深入源码理解Host(二)

      写在前面 停了近一个月的技术博客,随着正式脱离996的魔窟,接下来也正式恢复了.本文从源码角度进一步讨论.NET Core 3.0 中关于Host扩展的一些技术点,主要讨论Long Run Pro ...

  4. 拒绝一次性买卖:MyBatis的mapper和repository可重复生成工具

    背景 MyBatis的历史可谓久远了,码农们也在用着各式各样的代码生成工具.然而这些工具大部分都有一个缺点,那就是只能一次性生成文件.如果我们期间在生成的文件里做了修改,再次生成时,很多工具会覆盖我们 ...

  5. 玩转 SpringBoot 2 快速整合 | FreeMarker篇

    FreeMarker 介绍 Apache FreeMarker™是一个模板引擎:一个Java库,用于根据模板和更改数据生成文本输出(HTML网页,电子邮件,配置文件,源代码等).模板是用FreeMar ...

  6. android 定时提醒 - Notification

    定时弹出 demo ,代码如下: 1.MainActivity.java public class MainActivity extends Activity implements OnClickLi ...

  7. java对象排序(Comparable)详细实例

    对象实现Comparable接口 public class Field implements Comparable<Field>{ private String name; private ...

  8. AD 域服务简介(二)- Java 获取 AD 域用户

    博客地址:http://www.moonxy.com 关于AD 域服务器搭建及其使用,请参阅:AD 域服务简介(一) - 基于 LDAP 的 AD 域服务器搭建及其使用 一.前言 先简单简单回顾上一篇 ...

  9. java架构之路-(设计模式)五种创建型模式之单例模式

    设计模式自身一直不是很了解,但其实我们时刻都在使用这些设计模式的,java有23种设计模式和6大原则. 设计模式是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了可 ...

  10. 有关Spring事务,看这一篇就足够了

    本文将按照声明式事务的五个特性进行介绍: 事务传播机制 事务隔离机制 只读 事务超时 回滚规则 Spring事务传播机制 事务的特性 原子性(Atomicity):事务是一个原子操作,由一系列动作组成 ...