Linear regerssion 线性回归

回归:

stock market forecast

f(过去10年股票起伏的资料) = 明天道琼指数点数

self driving car

f(获取的道路图像)= 方向盘角度

recommendation

f(使用者A 商品B)= 购买商品可能性

预测妙蛙种子 cp值 combat power

f( xs ) =cp after evolution

xs

xhp

xw

xh

找model

定义 function set

step 1: model

y = b+ w* xcp  进化前的CP值

f1 : y= 10.0+9*xcp

f2: y= 9.8+9.2*xcp

f3: y= -0.8-1.2*xcp

infinite 有很多

linear model : y=b+sum(wi*xi)

xi feature wi weight b bais

step2: goodness of function

x1 ,   y^1

x2 ,   y^2

...

x10 ,   y^10

x 进化前的CP值

y 进化后的CP值

xncp  

损失函数

L(f)=L(w,b)

使用某个function 的wb 用来计算L

step: best function

gradient descent

L(w) w

w*= arg minwL(w)

穷举W所有值 ,看计算那个值? 效率低

可以: 1) 随机选取初始点 W0

2) 计算 dL/dw| w=w0

也就是切线的斜率      negative -》 increase w

positive -> decrease w

往左边走一步 还是右边走,LOSS会减少?

stepsize: 却觉于

1)现在的微分值越大,也就是越陡峭,

2)还有就是常数项 learning rate

w1 <- w0- n* dl/dw|w=w0

w2 <- w1-n*dl/dw|w=w1

local optimal 会找到局部最小值,而不是global optimal

如果是两个参数? w*,b* = arg min w,b L(w,b)

与上面的过程一致

有两个参数 w,b 决定了function

in linear regression ,the loss function L ins convex

NO local optimal

how's the results?

Generalization 泛化性能

selecting another model

y= b+w1*xcp+w2*(xcp)2

有没有可能更复杂的model,

how about more complex model?

在train data上效果是模型越复杂,效果很好,这是因为

越复杂的模型是包括简单的模型

A more complex model yields lower error on training data

但是在test data上效果不一定是。这就是overfitting

只考虑进化前的cp值可能还不够,同时需要考虑物种

预测重新设计function Set

if xs=pidgey y=b1+w1*xcp

也是线性模型,不同种类的物种,它的model不一样

考虑其他的影响因素 用更加复杂的模型

已经过拟合了

regularization 正则项 ,去解决过拟合,

当W很小,接近0,当输入有变化,output对输入变化不敏感。

输出对输入就不敏感,function 就平滑。如果一个平滑的function

收到噪声影响小。

调整b 和function平滑没关系,只是和位置有关系

lamad 越大,考虑训练误差越小

我们希望function平滑,但不能太平滑,调整lamad

机器学习 1 regression的更多相关文章

  1. 机器学习 Logistic Regression

    Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题, ...

  2. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  3. [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...

  4. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  5. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. Coursera台大机器学习课程笔记8 -- Linear Regression

    之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了 ...

  9. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

随机推荐

  1. Android 中关于ListView分割线的设置

    今天发现许多App上的listview的item之间的分割线都只显示了右边一部分,而左边的那一半则没有,第一反应则是给分割线设置一张背景图片就ok了: android:divider="@m ...

  2. 防御sql注入

    1. 领域驱动安全 领域驱动安全是一种代码设计方法.其思想是将一个隐式的概念转化为显示,个人认为即是面向对象的方法,将一个概念抽象成一个类,在该类中通过方法对类的属性进行约束.是否是字符串,包含什么字 ...

  3. Windows+GCC下内存对齐的常见问题

    结构/类对齐的声明方式 gcc和windows对于modifier/attribute的支持其实是差不多的.比如在gcc的例子中,内存对齐要写成: class X { //... } __attrib ...

  4. Gamma函数是如何被发现的?

    学过微积分的人,肯定都接触过Euler积分,按教科书上的说法,这是两种含有参变量的定积分,但其实没那么玄乎,它们只是两个函数.其中第一型Euler积分叫\(B\)-函数,第二型Euler积分叫\(\G ...

  5. 敏捷是什么?PMO是什么?

    敏捷组织中PMO应遵循的准则 敏捷改变了人们的工作方式,不仅仅是开发部门,而且还包括其它的部门,例如HR.财务以及PMO等.在大多数组织中,PMO是一个控制体.它指导项目团队的规范.模板以及流程.目前 ...

  6. Viewport---响应式 Web 设计----在路上(13)

    什么是 Viewport? viewport 是用户网页的可视区域. viewport 翻译为中文可以叫做"视区". 手机浏览器是把页面放在一个虚拟的"窗口"( ...

  7. C#设计模式-装饰者模式

    在软件开发中,我们经常想要对一类对象添加不同的功能,例如要给手机添加贴膜,手机挂件,手机外壳等,如果此时利用继承来实现的话,就需要定义无数的类,如StickerPhone(贴膜是手机类).Access ...

  8. KnockoutJS 3.X API 第八章 映射(mapping)插件

    Knockout旨在允许您将任意JavaScript对象用作视图模型. 只要一些视图模型的属性是observables,您可以使用KO将它们绑定到您的UI,并且UI将在可观察属性更改时自动更新. 大多 ...

  9. Security7:View Usage

    一,在Database level上,主要有 sys.database_principals, sys.database_permissions 和 sys.database_role_members ...

  10. HTML5系列:HTML5与HTML4的区别

    1. 语法的改变 1.1 DOCTYPE声明 DOCTYPE声明在HTML文件中必不可少,位于文件第一行. HTML4中声明方法: <!DOCTYPE html PUBLIC "-// ...